Новости Hardware → нанотехнологии
Главная новость

Intel как никогда близка к провалу... контрактного производства

Intel как никогда близка к провалу... контрактного производства

Один из блогеров авторитетного сайта SemiWiki поделился кулуарными новостями с недавно прошедшей конференции IEDM 2018. Впрочем, автор утверждает, что лично для него услышанное новостью не стало. Речь же идёт о том, что компания Intel собирается прекратить работать по контракту. В прошлом — в 90-е и в начале 2000-х Intel выпускала полупроводники по сторонним заказам. Потом компания прекратила эту практику и вновь вернулась к фабричной деятельности под заказ в 2012 году с расширением предложений по контрактам в 2014 году. А уже через два года после этого Intel поглотила одного из крупных клиентов на контрактные чипы — компанию Altera.

По мнению источника SemiWiki, Altera клюнула на 14-нм техпроцесс Intel, хотя в итоге на нём же и погорела. Компания Intel не смогла предоставить Altera тот же уровень сервиса при обслуживании клиентов, включая наборы инструментов, библиотек и опытный персонал, готовый прийти на помощь разработчикам, которым славится та же TSMC. У контрактника и домашнего производителя разные подходы к проектированию и разные умения. Безусловно, специалисты Intel знают и умеют сделать так, чтобы было хорошо. Но для той же Altera наборы правил проектирования Intel оказались тьмой-тьмущей. SemiWiki как шутку описывает безуспешные попытки проектировщиков Altera создать проект FPGA для 14-нм техпроцесса Intel. В итоге проект был отдан команде Intel, которая всё или почти всё сделала за Altera. Вышло хорошо, но такое на поток не поставишь.

Быстрый переход

TSMC получает разрешительные документы на строительство 3-нм завода

Как сообщают тайваньские источники, на этой неделе Национальное агентство Тайваня по контролю за окружающей средой (EIA) выдало оценку проекту компании TSMC по строительству завода для выпуска полупроводников с технологическими нормами 3 нм. Вопрос согласования требований к водным и энергетическим ресурсам нового завода с возможностями в районе предполагаемого строительства стоит не просто остро, а предельно остро. Хотя вода и энергия на Тайване подаются с превышением потребностей промышленности и населения, это не означает, что того и другого в избытке. Вновь построенный завод способен исчерпать ресурсы и вызвать коллапс в регионе.

На заводе TSMC

На заводе TSMC

Для строительства 3-нм полупроводникового завода TSMC выбран один из южных технологических парков страны — Nanke Park. Компания планирует начать строительство во второй половине 2020 года, начать установку промышленного оборудования в 2021 году и в 2022 году приступить к серийному выпуску 3-нм продукции. Компания Samsung, напомним, обещает начать массовый выпуск 3-нм чипов едва ли не в 2020 году.

Согласно постановлению агентства EIA, обязательным условием для строительства 3-нм завода TSMC станет использование 20 % электроэнергии из возобновляемых источников и повторного использования воды в объеме не менее 50 % от суточной необходимости. Общая суточная потребность завода оценивается в 75 000 тонн. Суточная потребность региона, где будет строиться завод, составит 880 000 тонн. В регион поставляется 930 000 тонн воды, что превышает потребности, но несильно. Поэтому с учётом развития региона (промышленности и населения) однозначно придётся наращивать этот ресурс.

То же самое с электроэнергией. Один только сканер диапазона EUV потребляет в сутки до 30 000 кВт∙ч, а таких будет не один или два, а от 10 до 20 установок. Кстати, эффективность современных сканеров с мощностью излучения 250 Вт составляет всего 0,02 %. Неэкономно, но других вариантов нет. Общей оценки по потреблению электроэнергии 3-нм завода TSMC нет, но все мощности TSMC, например, по итогам 2016 года потребили 8,85 млрд кВт·ч. Это без малого 1 % от выработанной электроэнергии в России в 2016 году. Масштаб потребления должен впечатлить.

В заключение добавим, что на строительство 3-нм завода компания TSMC планирует потратить около 600 млрд новых тайваньских долларов, что эквивалентно $19,45 млрд.

Источник:

В Южной Корее построят гигантский полупроводниковый кластер

Даже в условиях глобальной экономики власти любой страны обязаны защищать и защищают местного производителя. В своё время, например, власти Южной Кореи помогли субсидиями компании Hynix, когда остальные производители памяти не только требовали её крови (признать банкротом), но также руками национальных регуляторов выставляли заградительные пошлины на память DRAM её производства. Тогда Hynix выстояла, хотя вскоре двое из нападавших обанкротились сами и исчезли на свалке истории. Немецкая Qimonda и японская Elpida не нашли поддержки у национальных властей и больше их нет. Но на этом вызовы не закончились. В полупроводниковой отрасли, как и во всей мировой экономике, возникают турбулентности, которые грозятся поставить на грань выживания если не всех, то многих.

Судя по всему, в правительстве Южной Кореи хорошо понимают, что даже такие крупные компании, как Samsung и SK Hynix не смогут самостоятельно вытащить всю полупроводниковую отрасль страны. Но даже если они сами выстоят, остаётся множество средних и мелких компаний, которые гарантированно пострадают без государственной поддержки. Поэтому в недрах правительства Республики Корея родился план создать гигантский полупроводниковый кластер, который стал бы гарантией сохранения и поддержки бизнеса множества национальных компаний. И, конечно же, такой кластер сможет рассчитывать на государственные субсидии, если в этом возникнет необходимость.

Реализация плана намечается в первой половине 2019 года. Предварительно в проекте участвуют 50 компаний. Детали проекта будут утрясены позже, как и нет пока определённого места для строительства заводов. Всего в рамках кластера будут построены четыре производственных полупроводниковых фабрики, а также корпуса для разработчиков и филиалов компаний. Проект включает участие проектировщиков чипов, исследовательских групп по материалам и техпроцессам. Из гигантов в проекте пока засветилась одна компания SK Hynix. О масштабах проекта можно судить хотя бы по тому, что SK Hynix обещает в следующие 10 лет потратить на кластер 120 трлн вон — это $106 млрд! На закладку первых цехов и разработку проекта компания потратит 1,6 трлн вон или около $1,4 млрд.

Данный кластер рассматривается властями как стройка 21 века. Это будет самое передовое предприятие в мировой практике и, пожалуй, одно из самых крупных, хотя мы пока не знаем запланированной мощности заводов. Введение в строй кластера власти Республики Корея считают гарантией дальнейшего отрыва хай-тека страны от зарубежных конкурентов и, конечно же, основой дальнейшего благополучия отрасли и местной экономики. Работой в кластере собираются занять 10 000 человек, что также станет решением проблем с утечками мозгов за границу. Глобализация всё?

Источник:

TSMC развязывает войну за небольших клиентов

Ситуация с планами компании TSMC построить на Тайване новый завод с прицелом на обработку 200-мм, а не массовых 300-мм пластин начинает понемногу проясняться. Напомним, на прошлой неделе руководство TSMC объявило о планах построить новый завод. Вопреки правилу строить только передовые заводы, тайваньский контрактник выразил намерение построить завод для установки оборудования предыдущего поколения — для обработки 200-мм пластин. Это означает, что TSMC собирается обслуживать клиентов, которым не нужны значительные объёмы чипов сравнительно большой площади, типа GPU, CPU и FPGA.

Местные источники сообщают, что новый завод будет обслуживать заказчиков TSMC преимущественно с Тайваня. Это будут разработчики аналоговых чипов, драйверов для дисплеев LCD, силовых чипов MOSFET, датчиков и микроконтроллеров. В целом будущее предприятие будет обслуживать производителей автомобильной электроники, вещей с подключением к Интернету и электроники для промышленной автоматики. Подобным клиентам нужны небольшие по площади полупроводниковые решения, для чего достаточно 200-мм пластин.

Пример 200-мм пластины

Пример 200-мм пластины

Очевидно, что TSMC собирается развиваться также за счёт привлечения небольших клиентов (компаний). Это новый звоночек мировой полупроводниковой отрасли. Интенсификация борьбы за мелочь означает приближение непростых времён для отрасли. До недавнего времени TSMC скидывала излишки заказов для выпуска чипов на 200-мм пластинах своему временному производственному партнёру на Тайване компании Vanguard International Semiconductor (VIS). Во втором квартале 2019 года TSMC планирует разорвать договор о сотрудничестве с Vanguard, а после 2020 года размещать излишки заказов на запланированной к строительству новой фабрике.

На заводе Fab 3 компании TSMC

На заводе Fab 3 компании TSMC

Можно задать вопрос, почему компания не размещает мелочёвку на 300-мм пластинах? Ответ простой. Комплект фотомасок для 200-мм пластин стоит до нескольких сотен тысяч долларов США, тогда как комплект фотомасок для 300-мм пластин обходится в несколько миллионов долларов США. Для выпуска небольших чипов себестоимость производства на 300-мм пластинах оказывается слишком высокой, даже несмотря на то, что 300-мм пластина в два раза больше по площади, чем 200-мм. Также при порезке на небольшие кристаллы с 300-мм пластины получается существенно больше отходов, чем при порезке 200-мм пластины. Экономика должна быть экономной.

Источник:

Intel представила первую в мире «гибридную» x86-совместимую архитектуру

На мероприятии Intel Architecture Day глава подразделения Core and Visual Computing Group Раджа Кодури (Raja Koduri) представил первую в мире, по его словам, гибридную x86-совместимую микроархитектуру компании. Звучит излишне громко, но выглядит интересно и перспективно. На деле Кодури рассказал о новой 3D-упаковке разноплановых кристаллов в одно целое, но компактное решение. Фактически мы видим развитие идеи многочиповых упаковок, которая до этого была реализована компанией в виде упаковки EMIB (Embedded Multi-die Interconnect Bridge). Но если EMIB представляла собой бюджетный аналог 2.5D-упаковки (если сравнивать с мостом-подложкой для GPU AMD и NVIDIA с памятью HBM), то новая 3D-упаковка выводит Intel далеко вперёд по отношению к многочиповым продуктам тех же AMD и NVIDIA.

Intel

Intel

Что же предлагает Intel? Как и AMD, компания Intel говорит об отдельных кристаллах как о чиплетах (chiplets). Итоговый гибридный чип собирается из нескольких чиплетов, каждый из которых может быть выпущен в собственном техпроцессе с любыми технологическими нормами. Чиплеты распаиваются на мост-подложку — что-то типа упаковки Zen 2, но Intel говорит о необходимости идти дальше. Мост должен быть активным. Он должен содержать цепи по управлению шинами для связи чиплетов и должен компенсировать затухания и обеспечивать согласование линий. Фактически, мост-подложка — это отдельный микроконтроллер со сквозными соединениями металлизации типа TSVs, на который распаиваются чиплеты и который обеспечивает основу для сборки и упаковки гибридного решения в корпус типа BGA.

Intel

Intel

Самое интересное, что Intel готовится выпускать решения в новой упаковке менее чем через год — во второй половине 2019 года. Технология получила имя «Foveros». В качестве демонстрации Кодури показал прототип решения в упаковке со сторонами 12 мм высотой 1 мм с 10-нм логикой, установленной верхом на SoC, выпущенной в 22-нм техпроцессе (ориентировочно) и с памятью над логикой. Всё это входит в один компактный корпус. За счёт использования базовой логики (чипсета?), выпущенной с использованием не самого передового, но энергоэффективного техпроцесса, потребление всего чипа в режиме сна удалось снизить до 2 мВт.

Intel

Intel

По мнению Intel, дальнейшее действие закона Мура может быть продолжено только за счёт перехода на 3D-упаковку, что позволит снизить потребление решений и увеличить если не производительность, то функциональность за счёт гибридизации процессоров, SoC, FPGA, ускорителей и прочей сложной логики. И это не просто декларация — это план, реализация которого уже началась.

Источник:

TSMC построит на Тайване новый завод для «специализированных техпроцессов»

На днях TSMC провела такое ежегодное мероприятие, как форум поставщиков компании — материалов, оборудования, технологий и прочего. По результатам года среди представителей из свыше 700 компаний со всего мира были выбраны и премированы девять наилучших. Но сейчас речь не об этом, хотя масштабы зависимости контрактного производителя от поставщиков впечатляют безо всяких оговорок. На форуме генеральный директор TSMC Си Си Вэй (CC Wei) сделал интересное объявление. Так, на юге Тайваня вблизи города Тайнань компания будет строить новый завод для обработки кремниевых пластин. Необычное в данном случае то, что это будет завод по обработке 200-мм подложек, а не ставших массовыми 300-мм пластин.

Генеральный директор TSMC Си Си Вэй (фото Digitimes)

Генеральный директор TSMC Си Си Вэй (фото Digitimes)

Последней раз компания строила фабрику для обработки 200-мм подложек примерно 15 лет назад. Основная разница между 200-мм и 300-мм пластинами в том, что на пластинах большего диаметра получается в два раза больше чипов, чем на пластинах меньшего диаметра. В два раза! Это серьёзный фактор, влияющий на себестоимость микросхем. Почему TSMC пошла на этот шаг, пока остаётся только догадываться. Шеф компании утверждает, что это потребовалось для удовлетворения растущего спроса со стороны клиентов. Также нет ясности с техпроцессами, которые будут внедрены на новом предприятии. Коротко сообщается, что это будет специализированный техпроцесс, что бы это ни значило.

В то же время напомним, научный парк вблизи Тайнаня выбран местом строительства будущего завода TSMC для внедрения 3-нм техпроцесса. Предприятие должно быть построено к 2022 году с инвестициями в районе $20 млрд. Это огромные деньги, как и потребуются значительные ресурсы в виде воды и электроэнергии для обеспечения производственной деятельности предприятия. Поэтому может так статься, что компания решила изменить планы по вводу в строй 3-нм техпроцессов. Например, построив для этого менее масштабный завод с прицелом на обработку 200-мм пластин. Если это так, то это очередной звоночек полупроводниковой отрасли — на горизонте маячит замедление со всеми вытекающими неприятностями.

Источник:

Imec доказал эффективность памяти SST-MRAM для разделяемой кеш-памяти

На конференции 2018 IEEE International Electron Devices Meeting (IEDM) представители бельгийского исследовательского центра Imec продемонстрировали доказательство эффективности магниторезистивной памяти SST-MRAM для использования в качестве разделяемой кеш-памяти вместо традиционной памяти SRAM. Для этого была разработана модель массива SST-MRAM и выпущен опытный чип, на котором были проведены все необходимые измерения.

Следует отметить, что опытный массив памяти SST-MRAM выпущен с использованием 5-нм техпроцесса. Для производства был использован 193-нм сканер и однопроходная иммерсионная литография (с погружением в жидкость). Тем самым разработчики доказали, что процесс производства массива кеш-памяти SST-MRAM с технологическими нормами 5 нм может быть достаточно недорогим.

Сначала с помощью расчёта, а затем путём замеров был составлен график зависимости потребления массива кеш-памяти SST-MRAM и SRAM в зависимости от объёма памяти. Выяснилось, что в случае ёмкость 0,4 Мбайт память SST-MRAM становится эффективнее памяти SRAM в режимах чтения, а при наборе ёмкости 5 Мбайт потребление в режиме записи памяти SRAM начинает превышать потребления в режиме записи памяти SST-MRAM. Это означает, что в техпроцессах 5 нм память SST-MRAM невыгодно использовать для кеш-памяти первого и второго уровней, тогда как для кеш-памяти третьего уровня, обычно разделяемой, это эффективная замена SRAM. К тому же память SST-MRAM является энергонезависимой, что добавляет ей очков при сравнении с обычной оперативной памятью.

Остаётся напомнить, что ячейка памяти SST-MRAM представляет собой бутерброд из диэлектрика, заключённого между двумя слоями с намагниченностью: одну с фиксированной, а вторую — с переменной. В зависимости от поляризации тока свободный слой меняет направление намагниченности благодаря движению через него электронов с заданным вращающим моментом. Использование SST-MRAM вместо SRAM решает также другую задачу — это увеличения плотности ячеек памяти. Эксперимент показал, что в рамках 5-нм техпроцесса ячейка SST-MRAM занимает примерно 43,3 % от площади ячейки SRAM.

Источник:

В следующем полугодии часть 7-нм линий TSMC могут простаивать

Накануне издание Commercial Times сообщило, что в следующем полугодии часть передовых полупроводниковых линий тайваньской компании TSMC могут оказаться загруженными не полностью. Некий осведомлённый источник из среды промышленников якобы сообщил, что компании Apple, HiSilicon и Qualcomm опасаются заказывать TSMC чрезмерные объёмы 7-нм мобильных процессоров. В сумме в первые шесть месяцев 2019 года объём простаивающих 7-нм линий может достигать 20 %, что довольно много.

Компания TSMC не стала комментировать эти заявления. Очередная встреча с инвесторами TSMC запланирована на середину января. Пока же руководство этого тайваньского контрактного производителя полупроводников придерживается старых прогнозов — добиться в 2019 году от 7-нм техпроцесса выручки не менее 20 % от совокупной за год. По итогам 2018 года доля выручки от 7-нм линий составит около 10 %. Правда, в отдельности за четвёртый квартал 2018 года доля выручки от 7-нм техпроцесса уже приблизилась к 20 % от общего дохода за квартал. Но если в первом полугодии лидеры рынка мобильных процессоров в лице упомянутых выше компаний снизят объёмы заказов, то TSMC рискует не удержаться в обозначенных рамках.

Рынок SoC для смартфонов действительно развивается со слабеющей динамикой. Она положительная, но не такая крутая, как раньше. Слух о возможном простое самых востребованных для флагманских SoC линий вполне вписывается в данную тенденцию. Другое дело, что этой продукцией дело не ограничивается. Компания TSMC обслуживает 7-нм заказы разработчиков ASIC для майнеров, а также выпускает процессоры и GPU компании AMD. Впрочем, падение котировок криптовалют уже не позволяет TSMC рассчитывать на значительные доходы от данного сектора.

Возможно, значительная загрузка 7-нм линий TSMC с возможностью расширения произойдёт только во второй половине 2019 года. По словам TSMC, на конец следующего года она ожидает увидеть от клиентов около 100 проектов чипов для выпуска с использованием 7-нм техпроцесса. Это будет в два раза больше, чем на конец текущего года. Иными словами, во втором полугодии 2019 года может образоваться дефицит 7-нм линий TSMC, что, в общем-то, тоже плохо. Ведь именно в этот период обещают выйти 7-нм настольные GPU и CPU компании AMD.

Источник:

Samsung в целом завершила разработку 3-нм техпроцесса и запустит его в 2020 году

В понедельник на стартовавшей годовой конференции International Electronic Devices Meeting (IEDM 2018) глава контрактного подразделения компании Samsung Electronics д-р Юнг (Dr. ES Jung) сделал интересное заявление. Согласно приведённой на сайте Pulsenews цитате (которой нет в официальном пресс-релизе), Samsung намерена запустить массовое производство чипов с использованием 3-нм техпроцесса в 2020 году. Ранее компания Samsung официально сообщала, что техпроцесс с нормами 3 нм с использованием кольцевых затворов (Gate-All-Around Early/Plus, 3GAAE/GAAP) будет внедрён в массовое производство в 2021 году. Если компания действительно собирается форсировать внедрение 3-нм техпроцесса, то это означает, что она нацелена на значительный рывок на рынке контрактных полупроводников.

Глава контрактного полупроводникового производства Samsung д-р Юнг (Dr. ES Jung)

Глава контрактного полупроводникового производства Samsung д-р Юнг (Dr. ES Jung)

По поводу 3-нм техпроцесса GAA в пресс-релизе Samsung сказано, что полное название технологии звучит как Multi-Bridge-Channel FET(MBCFET). Каналы транзисторов в такой структуре представляют собой вертикальный стек из нескольких уложенных друг на друга наностраниц (мостов), каждая из которых окружена собственным затвором. Характеристиками таких транзисторов легко управлять, варьируя ширину наностраниц и их количество, тем самым оптимизируя транзисторы для той или иной задачи. Что самое приятное, эти структуры можно выпускать на тех же самых линиях, что и структуры с транзисторами FinFET с совпадением технологий производства до 90 %. Необходимо лишь изменить часть фотошаблонов, что обеспечит простую миграцию с FinFET-техпроцессов на GAA-техпроцессы.

Каналы транзисторов превратятся в «перемычки» из нанопроводов и наностраниц (изображение IBM)

Каналы транзисторов превратятся в «перемычки» из нанопроводов и наностраниц (изображение IBM)

Без учёта цитаты на Pulsenews, Samsung говорит о завершении квалификации 3-нм техпроцесса. Начало производства с этими нормами стартует по плану, а всё оставшееся до этого момента время компания посвятит шлифовке деталей нового техпроцесса. Да, самое интересное, что Samsung выпустила опытный массив SRAM с использованием 3-нм техпроцесса MBCFET, однако пока данных о характеристиках образца нет. Как только они появятся, мы сразу об этом сообщим.

wsj.com

wsj.com

Зачем Samsung нужен этот рывок, если он действительно запланирован? Обоснованно предполагается, что Samsung необходимо усилить направление на контрактное производство чипов. Это снизит зависимость от рынка DRAM, который подвержен сильным колебаниям. На этапе внедрения 7-нм техпроцесса Samsung уступила компании TSMC, но может обогнать её на этапе внедрения 3-нм техпроцесса. Сейчас Samsung вкладывает огромные деньги в полупроводниковые предприятия по выпуску чипов, включая контрактное производство. В ближайшие годы она рассчитывает довести годовую выручку на этом направлении до $10 млрд и выше, тогда как в прошлом году выручила около $4,6 млрд. Выход на цифру $10 млрд сделает Samsung второй по величине в мире на рынке контрактников после TSMC.

Источники:

Intel нашла замену транзистору: предложен необычный логический элемент с памятью

Вопрос дальнейшего снижения масштабов техпроцесса волнует всех производителей полупроводников и компанию Intel в частности. Уменьшение размеров элементов на кристалле позволяет снижать как питание и потребление, так и увеличивать рабочие частоты. И хотя до теоретического предела работы традиционных КМОП-процессов ещё есть небольшой запас, проблемы с переходом на 10-нм технологические нормы показали, что каждый следующий нанометр надо вырывать у природы с неимоверными усилиями и затратами. При этом всем очень хочется, чтобы даже в эру после КМОП процессорные архитектуры продолжали соответствовать фон-неймановским. Это привычно и даёт возможность использовать опыт многих десятилетий. Реально ли это? В Intel считают, что реально.

Как сообщают в Intel, в журнале Nature опубликованы результаты совместной разработки специалистов компании и учёных из калифорнийского Университета в Беркли и Национальной лаборатории им. Лоуренса в Беркли (Lawrence Berkeley National Laboratory). В публикации сообщается о разработке логического элемента будущего. Элемент называется MESO: magneto-electric spin-orbit или, по-русски, магнитоэлектрический спин-орбитальный (МЭСО). По сравнению с транзисторами логика МЭСО может переключаться с напряжением в 5 раз меньшим, чем транзисторы в логике КМОП. В эксперименте элемент переключался с напряжением 500 мВ, но расчёты показывают, что переключение также будет происходить при напряжении 100 мВ.

Снижение напряжения для переключения элемента автоматически ведёт к снижению потребления и токов утечек. Разработчики считают, что МЭСО-логика уменьшит потребление чипов от 10 до 30 раз и обеспечит сверхнизкое потребление в ждущем режиме. Нетрудно представить, что разработка обещает толкнуть вычислительные архитектуры далеко вперёд, что в эру ИИ может оказать неоценимую услугу отрасли и людям. Мы же не хотим конкурировать со Скайнет за доступ к электростанциям? Шутка.

Но на этом вся прелесть в МЭСО не заканчивается. Этот элемент может также хранить информацию — как минимум один бит данных на один элемент. Тем самым информация может храниться там, где она обрабатывается. Мозги 2.0? Фишка в том, что в качестве материала для ячейки МЭСО используется мультиферроик в виде соединения висмута, железа и кислорода (BiFeO3). Мультиферроики (в советской литературе — сегнетомагнетики) отличаются тем, что в них существуют две и более упорядоченности. В противовес им, например, в ферромагнетике под воздействием внешнего электромагнитного поля проявляется намагниченность, а в сегнетоэлектриках — начинает течь ток.

В мультиферроиках в виде соединения BiFeO3 атомы кислорода и железа внутри решётки из висмута создают электрический диполь и связанный с ними магнитный (спиновый) момент. Меняя направление электрического диполя с помощью напряжения переключения, также изменяется направление намагниченности. Последнее можно записать и позже считать как данные (0 или 1). Вторая часть аббревиатуры МЭСО — спин-орбитальный — означает, что считывание и запись данных происходит с использованием эффекта переноса вращательного момента, используя для этого спин-орбитальный момент электронов. Логический элемент и память в одной элементарной структуре — это очень интересно!

Источник:

window-new
Soft
Hard
Тренды 🔥