Процессоры и память

Четыре поколения Ryzen в одном тесте: от Zen через Zen+ и Zen 2 до Zen 3

⇣ Содержание

#Описание тестовой системы и методики тестирования

Основные герои настоящего тестирования – восьмиядерники AMD четырёх последовательных поколений: Ryzen 7 1800X, Ryzen 7 2700X, Ryzen 7 3800XT и Ryzen 7 5800X. Их практическое сравнение должно нам позволить сделать выводы о том, как AMD добилась успеха в столь сжатые сроки и какой по величине прирост производительности обеспечивает каждое из поколений процессоров Ryzen.

Однако мы не ограничились тестированием одних лишь процессоров AMD. Компанию им составил также и Core i7-10700K – современный восьмиядерный процессор Intel, построенный на микроархитектуре Skylake (она используется компанией в настольных процессорах с 2015 года). Его участие в сравнении позволит выяснить, в какой конкретно момент AMD смогла превзойти по быстродействию своего конкурента и какой разрыв между процессорами разных производителей существует сейчас.

Таким образом, в состав тестовой системы вошли следующие комплектующие:

  • Процессоры:
    • AMD Ryzen 7 5800X (Vermeer, 8 ядер + SMT, 3,8-4,7 ГГц, 32 Мбайт L3);
    • AMD Ryzen 7 3800XT (Matisse, 8 ядер + SMT, 3,8-4,7 ГГц, 32 Мбайт L3);
    • AMD Ryzen 7 2700X (Pinnacle Ridge, 8 ядер + SMT, 3,7-4,35 ГГц, 16 Мбайт L3);
    • AMD Ryzen 7 1800X (Summit Ridge, 8 ядер + SMT, 3,6-4,1 ГГц, 16 Мбайт L3);
    • Intel Core i7-10700K (Comet Lake, 8 ядер + HT, 3,8-5,1 ГГц, 16 Мбайт L3).
  • Процессорный кулер: кастомная СЖО EKWB.
  • Материнские платы:
    • ASRock X470 Taichi Ultimate (Socket AM4, AMD X470);
    • ASUS ROG Crosshair VIII Hero (Socket AM4, AMD X570);
    • ASUS ROG Maximus XII Hero (Wi-Fi) (LGA 1200, Intel Z490).
  • Память: 2 × 16 Гбайт DDR4-3600 SDRAM, 16-18-18-38 (Crucial Ballistix RGB BL2K16G36C16U4BL).
  • Видеокарта: NVIDIA GeForce RTX 3090 Founders Edition (GA102, 1395-1695/19500 МГц, 24 Гбайт GDDR6X 384-бит).
  • Дисковая подсистема: Intel SSD 760p 2 Тбайт (SSDPEKKW020T8X1).
  • Блок питания: Thermaltake Toughpower DPS G RGB 1000W Titanium (80 Plus Titanium, 1000 Вт).

Наличие в списке комплектующих материнской платы, основанной на наборе логики AMD X470, обусловлено отсутствием сквозной совместимости между платами и процессорами внутри экосистемы Socket AM4. Процессоры Ryzen первого поколения не могут работать в современных платах, поэтому для тестов Ryzen 7 1800X пришлось использовать старую материнскую плату ASRock X470 Taichi Ultimate.

Все сравниваемые процессоры тестировались с настройками, принятыми производителями плат по умолчанию. Это значит, что для платформ Intel обозначенные в спецификациях ограничения по энергопотреблению игнорируются, вместо чего используются предельно возможные частоты в целях получения максимальной производительности. В таком режиме эксплуатирует процессоры подавляющее большинство пользователей, поскольку включение лимитов по тепловыделению и энергопотреблению в большинстве случаев требует специальной настройки параметров BIOS.

Все сравниваемые процессоры были протестированы с памятью, работающей в режиме DDR4-3600 с настройками таймингов по XMP, за исключением AMD Ryzen 7 1800X. Поскольку данный процессор не обеспечивал стабильной работоспособности со скоростной памятью, для него частота памяти понижалась до состояния DDR4-3200 со схемой задержек 16-18-18-38.

Тестирование выполнялось в операционной системе Microsoft Windows 10 Pro (20H2) Build 19042.572 с использованием следующего комплекта драйверов:

  • AMD Chipset Driver 2.13.27.501;
  • Intel Chipset Driver 10.1.31.2;
  • NVIDIA GeForce 461.40 Driver.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Комплексные бенчмарки:

  • Futuremark PCMark 10 Professional Edition 2.1.2508 – тестирование в сценариях Essentials (обычная работа среднестатистического пользователя: запуск приложений, сёрфинг в интернете, видеоконференции), Productivity (офисная работа с текстовым редактором и электронными таблицами), Digital Content Creation (создание цифрового контента: редактирование фотографий, нелинейный видеомонтаж, рендеринг и визуализация 3D-моделей).
  • 3DMark Professional Edition 2.17.7173 — тестирование в сцене Time Spy Extreme 1.0.

Приложения:

  • 7-zip 19.00 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 3,1 Гбайт. Используется алгоритм LZMA2 и максимальная степень компрессии.
  • Adobe Photoshop 2021 22.2.0 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта Puget Systems Adobe Photoshop CC Benchmark 18.10, моделирующего типичную обработку изображения, сделанного цифровой камерой.
  • Adobe Photoshop Lightroom Classic 10.11 – тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 16-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Fujifilm X-T1.
  • Adobe Premiere Pro 2020 14.9.0 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат YouTube 4K проекта, содержащего HDV 2160p30 видеоряд с наложением различных эффектов.
  • Blender 2.91.2 – тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели pavillon_barcelona_v1.2 из Blender Benchmark.
  • Cinebench R23 – стандартный бенчмарк для тестирования скорости рендеринга в Cinema 4D R23.
  • Magix Vegas Pro 18.0 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат YouTube 4K проекта, содержащего HDV 2160p30 видеоряд с наложением различных эффектов.
  • Microsoft Visual Studio 2017 (15.9.33) – измерение времени компиляции крупного MSVC-проекта – профессионального пакета для создания трёхмерной графики Blender версии 2.79b.
  • Stockfish 12 – тестирование скорости работы популярного шахматного движка. Измеряется скорость перебора вариантов в позиции «1q6/1r2k1p1/4pp1p/1P1b1P2/3Q4/7P/4B1P1/2R3K1 w».
  • SVT-AV1 v0.8.5 — тестирование скорости транскодирования видео в перспективный формат AV1. Для оценки производительности используется исходный 1080p@50FPS AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • Topaz Video Enhance AI v1.7.1 – тестирование производительности в основанной на ИИ программе для улучшения детализации видео. В тесте используется исходное видео в разрешении 640 × 360, которое увеличивается в два раза с использованием модели Artemis LQ v7.
  • V-Ray 5.00 – тестирование производительности работы популярной системы рендеринга при помощи стандартного приложения V-Ray Benchmark Next.
  • VeraCrypt 1.24 – тестирование криптографической производительности. Используется встроенный в программу бенчмарк, задействующий тройное шифрование Kuznyechik-Serpent-Camellia.
  • x265 3.4+26 10bpp — тестирование скорости транскодирования видео в формат H.265/HEVC. Для оценки производительности используется исходный 2160p@24FPS AVC-видеофайл, имеющий битрейт около 42 Мбит/с.

Игры:

  • Assassin’s Creed Odyssey. Разрешение 1920 × 1080: Graphics Quality = Ultra High. Разрешение 3840 × 2160: Graphics Quality = Ultra High.
  • Borderlands 3. Разрешение 1920 × 1080: Graphics API = DirectX 12, Overall Quality = Badass. Разрешение 3840 × 2160: Graphics API = DirectX 12, Overall Quality = Badass.
  • Civilization VI: Gathering Storm. Разрешение 1920 × 1080: DirectX 12, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra. Разрешение 3840 × 2160: DirectX 12, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra.
  • Crysis Remastered. Разрешение 1920 × 1080: Graphics Settings = Very High, RayTracing Quality = Very High, Anti-Aliasing = TSAA. Разрешение 3840 × 2160: Graphics Settings = Very High, RayTracing Quality = Very High, Anti-Aliasing = TSAA.
  • Cyberpunk 2077. Разрешение 1920 × 1080: Quick Preset = Ray Tracing – Ultra. Разрешение 3840 × 2160: Quick Preset = Ray Tracing – Ultra.
  • Far Cry New Dawn. Разрешение 1920 × 1080: Graphics Quality = Ultra, HD Textures = On, Anti-Aliasing = TAA, Motion Blur = On. Разрешение 3840 × 2160: Graphics Quality = Ultra, Anti-Aliasing = Off, Motion Blur = On.
  • Hitman 3. Разрешение 1920 × 1080: Super Sampling = 1.0, Level of Detail = Ultra, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = Ultra, Shadow Quality = Ultra, Mirrors Reflection Quality = High, SSR Quality = High, Variable Rate Shading = Quality. Разрешение 3840 × 2160: Super Sampling = 1.0, Level of Detail = Ultra, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = Ultra, Shadow Quality = Ultra, Mirrors Reflection Quality = High, SSR Quality = High, Variable Rate Shading = Quality.
  • Metro Exodus. Разрешение 1920 × 1080: DirectX 12, Quality = Ultra, Texture Filtering = AF 16X, Motion Blur = Normal, Tesselation = Full, Advanced PhysX = Off, Hairworks = Off, Ray Trace = Off, DLSS = Off. Разрешение 3840 × 2160: DirectX 12, Quality = Ultra, Texture Filtering = AF 16X, Motion Blur = Normal, Tesselation = Full, Advanced PhysX = Off, Hairworks = Off, Ray Trace = Off, DLSS = Off.
  • Shadow of the Tomb Raider. Разрешение 1920 × 1080: DirectX12, Preset = Highest, Anti-Aliasing = TAA. Разрешение 3840 × 2160: DirectX12, Preset = Highest, Anti-Aliasing = Off.
  • A Total War Saga: Troy. Разрешение 1920 × 1080: DirectX 12, Quality = Ultra, Unit Size = Extreme. Разрешение 3840 × 2160: DirectX 12, Quality = Ultra, Unit Size = Extreme.
  • Watch Dogs Legion. Разрешение 1920 × 1080: DirectX 12, Quality = Ultra, RTX = Off, DLSS = Off. Разрешение 3840 × 2160: DirectX 12, DirectX 12, Quality = Ultra, RTX = Off, DLSS = Off.
  • World War Z. Разрешение 1920 × 1080: DirectX11, Visual Quality Preset = Ultra. Разрешение 3840 × 2160: DirectX11, Visual Quality Preset = Ultra.

Во всех игровых тестах в качестве результатов приводится среднее количество кадров в секунду, а также 0,01-квантиль (первая перцентиль) для значений FPS. Использование 0,01-квантиля вместо показателей минимального FPS обусловлено стремлением очистить результаты от случайных всплесков производительности, которые были спровоцированы не связанными напрямую с работой основных компонентов платформы причинами.

#IPC

В первую очередь давайте разберёмся с описанной процессорами Ryzen траекторией показателя IPC, то есть с тем, как менялась их удельная производительность. Такое исследование нужно для удовлетворения академического любопытства и оценки эффективности микроархитектур от Zen до Zen 3 в чистом виде. Дело в том, что процессоры в каждом поколении становятся быстрее не только за счёт микроархитектуры, но и в том числе и за счёт повышения рабочих частот. Например, максимальная рабочая частота Ryzen 7 5800X в конечном итоге превысила оную у Ryzen 7 1800X на 15 %, демонстрируя прирост на каждом этапе. Вместе с последовательными улучшениями в технологии авторазгона Precision Boost это заметно улучшает быстродействие и маскирует реальный прирост IPC, который получается от микроархитектурных улучшений.

Чтобы выделить из всей картины рост производительности, обусловленный исключительно интересующим нас фактором, мы сравнили восьмиядерные Ryzen разных поколений при одной и той же фиксированной тактовой частоте. Конкретно было выбрано значение 4,0 ГГц – на этой частоте способны работать Ryzen всех поколений, несмотря на разницу в используемых техпроцессах. Оперативная память во всех случаях также работала одинаково – в режиме DDR4-3200.

В следующей таблице приводятся результаты сравнения четырёх одночастотных восьмиядерников в ресурсоёмких приложениях и тот прирост производительности, который фиксируется при переходе от процессора одного поколения к следующему.

Как видно из приведённой таблицы, максимальный взлёт вычислительной производительности произошёл при переходе от Zen+ (Pinnacle Ridge) к Zen 2 (Matisse). На этом этапе рост быстродействия в некоторых случаях достигает 30-40 %, и это закономерно, ведь в Zen 2 компания AMD удвоила и скорость работы FPU-блока, и объём доступной кеш-памяти. В результате при равной тактовой частоте процессоры Ryzen 3000 опережают предшественников серии Ryzen 2000 в среднем на 22,8 %.

Что касается новейшего поколения Ryzen 5000 на базе микроархитектуры Zen 3, то оно принесло далеко не такой мощный прирост. Если сравнивать с Ryzen 3000, то в среднем в ресурсоёмких приложениях наблюдается лишь 11-процентное увеличение удельной производительности, то есть улучшения в Zen 3 оказались далеко не столь монументальными, как те усовершенствования, которые произошли на предыдущем этапе модернизации микроархитектуры. Впрочем, нельзя сказать, что мы разочарованы. Два поколения подряд AMD удаётся добиваться роста быстродействия на двузначное число процентов – это очень впечатляющий прогресс.

Если же говорить о картине в целом, то с момента выхода первых Zen показатель IPC вырос на 42,5 %, и это число выглядит действительно фантастическим, так как на достижение такого результата AMD потратила всего четыре года.

Мы не поместили на этот график результат процессора с микроархитектурой Intel Skylake, однако он был протестирован наряду с различными Ryzen. И полученные данные свидетельствуют: с точки зрения IPC массовых чипов AMD обошла конкурента на этапе выхода Ryzen 3000 с микроархитектурой Zen 2. При одинаковой тактовой частоте Matisse обходит Skylake в среднем на 7,7 %. Преимущество же Vermeer и микроархитектуры Zen 3 достигло уже 19,4 %. Именно такое отставание Intel нужно попробовать наверстать в процессорах Rocket Lake.

В играх, которые создают несколько иную по своему характеру нагрузку, ситуация, естественно, сильно отличается. В этом можно убедиться с помощью следующей таблицы с показателями средней частоты кадров в разрешении Full HD при максимальных настройках качества изображения. Условия тестирования при этом остаются теми же – мы сравниваем восьмиядерники на фиксированной частоте 4,0 ГГц.

В то время как максимальный прирост в удельной вычислительной производительности фиксировался при переходе от процессора Pinnacle Ridge к Matisse, то есть при вводе в строй микроархитектуры Zen 2, для игрового быстродействия гораздо более важным свершением стало появление дизайна Zen 3. Средняя кадровая частота Ryzen 5000 выросла сразу на 16,4 %, если сравнивать с показателями Ryzen 3000, и очевидно, что самый значительный вклад в этот прирост внесло внедрение восьмиядерных CCX-модулей вместо четырёхъядерных. Вопрос неэффективного межъядерного взаимодействия в современных Ryzen больше не стоит, и это выпукло отражается на игровых результатах.

Если посмотреть на то, как прогрессировала средняя геймерская производительность процессоров AMD на протяжении четырёх поколений CPU, то получится, что с первых Zen, которые вышли в 2017 году, обеспечиваемая ими кадровая частота поднялась в среднем на 36 % – очень весомый результат, который наверняка способен заставить обладателей Ryzen 1000 или Ryzen 2000 серьёзно задуматься о модернизации процессора. И кстати, хорошо видно, что микроархитектура Zen 3 подняла удельную игровую производительность сильнее, чем это сделали два предыдущих поколения массовых процессоров. Иными словами, представители семейства Ryzen 5000 получили звание лучших вариантов для геймерских систем именно благодаря этому последнему рывку.

То, что случилось в Ryzen свежего поколения, вывело их удельную производительность выше уровня Intel Skylake не только в ресурсоёмких приложениях, но и в играх. До выхода Verneer процессоры Intel предлагали лучший игровой IPC, но теперь AMD может похвастать убедительным преимуществом и в этой сфере тоже. Причём величина превосходства Vermeer над Skylake на одинаковой тактовой частоте в среднем составляет заметные 10 %. Правда, нужно оговориться, что эта величина получена при условии использования мощной графической карты GeForce RTX 3090, а для более слабой графики разрыв будет получаться меньшим.

Но в итоге этого небольшого исследования IPC процессоров Ryzen различных поколений мы вынуждены отметить, что, несмотря на явное движение вперёд, AMD всё же излишне оптимистично оценивает результативность своей работы. Хотя компания утверждала, что удельная производительность Zen 3 выросла по сравнению с показателями Zen 2 на 19 %, по результатам наших измерений получается, что речь идёт скорее о 11 %. Или же если взять в рассмотрение не только вычислительные задачи, но и игры, то этот показатель можно оценить величиной 13 %, что всё равно заметно меньше официально объявленного показателя.

#Производительность в комплексных тестах

Переходим к сравнению процессоров в номинальном режиме – без искусственного ограничения их тактовой частоты.

Тест PCMark 10, который должен показывать средневзвешенную производительность систем при обыденном домашнем или офисном использовании, не преподносит никаких сюрпризов. Каждый следующий Ryzen быстрее предыдущего, причём на достаточно отчётливую величину и в любых сценариях. Но особо обратить внимание стоит на два факта. Во-первых, по мнению PCMark 10, превзойти Intel Core компании AMD удалось только в последнем поколении своих процессоров, которое основывается на микроархитектуре Zen 3. Во-вторых, величина прироста при переходе от Ryzen двухтысячной серии к трёхтысячной серии и на следующем шаге – при переходе к пятитысячной серии – примерно одинакова. То есть эффект, которого добивается AMD на каждом шаге совершенствования микроархитектуры, в целом оказывается примерно равным. Из этого ряда выбивается разве только переход от Ryzen 1000 к Ryzen 2000, но эту ступень в развитии AMD и не считает полноценной, маркируя второе поколение микроархитектуры «промежуточным» наименованием Zen+.

Тест 3DMark даёт оценку игровой производительности, но в целом картина здесь похожа на то, что мы видели в PCMark 10. Особо выделить можно разве только то, что, по данным процессорного теста, разрыв между Ryzen 7 5800X и Ryzen 7 1800X достигает 64 %. А это значит, что если AMD продолжит двигаться теми же темпами и дальше, то можно ожидать, что следующее поколение Ryzen будет быстрее первых носителей микроархитектуры Zen (аналогичного класса) уже примерно вдвое.

#Производительность в приложениях

Считается, что при создании и обработке цифрового контента процессоры Ryzen были достаточно сильны всегда. Но на самом деле изначально AMD брала верх над Intel грубой силой: за счёт превосходства в числе вычислительных ядер. При этом по удельной производительности на ядро процессоры Ryzen смогли сделать рывок в рабочих задачах лишь после внедрения микроархитектуры Zen 2, где AMD расширила блок FPU и наделила его способностью работы с 256-битными данными не в два этапа, а целиком. В результате Ryzen 7 3800XT получил 30-процентное преимущество перед Ryzen 7 2700X и обошёл по быстродействию Core i7-10700K (и аналогичный по характеристикам Core i9-9900K).

Надо сказать, что неплохую результативность показывает и последняя итерация микроархитектуры AMD – Zen 3. В среднем Ryzen 7 5800X выигрывает у Ryzen 7 3800XT 18 %. Однако здесь есть один интересный нюанс. Процессоры трёхтысячной серии получили максимальный прирост в приложениях, направленных на работу с фото и видео: например, Ryzen 7 3800XT оказывается быстрее Ryzen 7 2700X в Lightroom или при перекодировании видео современными кодеками в целых полтора раза. Ryzen 7 5800X же предлагает максимальный прирост на вычислениях другой направленности – при рендеринге в пакетах трехмерного моделирования.

В сумме же если сопоставить новейший Ryzen 7 5800X и процессор Ryzen 7 1800X четырёхлетней давности, то получится, что за это время производительность предложений AMD в ресурсоёмких задачах смогла возрасти в среднем на 69 %. Причём максимальный прирост достигнут в видеокодеках – здесь ускорение доходит до впечатляющего 90-процентного уровня.

Рендеринг:

Обработка фото:

Работа с видео:

Перекодирование видео:

Компиляция:

Архивация:

Шахматы:

Шифрование:

#Производительность в играх. Тесты в разрешении 1080p

Игровая производительность Ryzen долго была их слабым местом. Но в микроархитектуре Zen 3 компания AMD наконец-то избавилась от главной структурной проблемы в своих процессорах, которая не давала им возможности проявить себя в играх, – она объединила в CCX-комплексах по восемь ядер и значительно снизила задержки при межъядерных взаимодействиях. Вместе с мерами, принятыми ранее, — в первую очередь с увеличением размера кеш-памяти третьего уровня в Zen 2, — это дало очень мощный эффект, и в конечном итоге современные процессоры Ryzen в играх стали как минимум в полтора раза быстрее родоначальников семейства. Этот прирост распределяется так: Ryzen 7 3800XT превосходит Ryzen 7 2700X примерно на 13 %, а Ryzen 7 5800X быстрее, чем Ryzen 7 3800XT, в среднем на 20 %. Оставшиеся 10 % приходятся на шаг от Ryzen 7 1800X к Ryzen 7 2700X.

В результате теперь вполне правомерно говорить, что старший восьмиядерник AMD последнего поколения, Ryzen 7 5800X, обходит восьмиядерники Intel не только при расчётах, но и в играх. Преимущество в этом случае нельзя назвать подавляющим, но не заметить его тоже нельзя. А это значит, что окончательную победу над Skylake компания AMD одержала только сейчас – с вводом в строй микроархитектуры Zen 3. Впрочем, игры, где Skylake всё ещё силён, существуют, и они далеко не единичны.

#Производительность в играх. Тесты в разрешении 2160p

Что характерно, рост игровой производительности по мере совершенствования микроархитектуры процессоров AMD прослеживается даже в том случае, если речь идёт о разрешении 4K. Несмотря на то, что в этом случае большая часть нагрузки падает на видеоподсистему, первые Ryzen явно не готовы для работы в системах с мощной графикой, даже если такие системы нацелены на игры в высоких разрешениях. Но микроархитектура Zen 3 оставила все подобные проблемы в прошлом. Тот же Ryzen 7 5800X отлично подойдёт для абсолютно любой игровой системы, и, больше того, в среднем такая система будет выдавать более высокую кадровую частоту, чем аналогичная конфигурация с восьмиядерным процессором Core i7-10700K (или Core i9-9900K).

#Энергопотребление

За время эволюции процессоров Ryzen техпроцесс менялся дважды: с 14 на 12 нм при переходе к микроархитектуре Zen+, а затем на 7 нм на следующем этапе – при смене микроархитектуры на Zen 2. Однако открывающиеся возможности компания AMD обращает не в снижение потребления и тепловыделения, а в рост тактовых частот. Поэтому не стоит удивляться, что у всех старших восьмиядерных Ryzen спецификацией устанавливается одинаковая величина предельного потребления 142 Вт. Именно исходя из этой константы процессоры Ryzen динамически управляют своей тактовой частотой, а потому особых различий в их реальных энергетических аппетитах не наблюдается. По крайней мере в тех случаях, когда они загружены многопоточной вычислительной работой.

Подтвердить всё это можно следующими графиками, на которых приведено полное потребление тестовых систем, измеренное после блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается.

Немного выделяется на общем фоне только Ryzen 7 1800X, который, кажется, потребляет меньше собратьев. Однако объясняется это отнюдь не лучшей экономичностью данного процессора, а тем, что мы измеряем потребление платформы целиком, и в случае с Ryzen 7 1800X в тесты попала другая материнская плата, основанная на чипсете X470, а не X570. Такие материнки заметно экономичнее, что и обуславливает более низкие показатели потребления у самого старого из участников теста.

#Выводы

В материале, подобном сегодняшнему, довольно сложно сформулировать какие-то чёткие выводы. То, что производительность с переходом к каждому последующему поколению процессоров растёт, – это вполне очевидный факт. Удивить тут может разве только то, что у AMD этот прирост опирается на усовершенствования в микроархитектуре и оказывается хорошо заметным почти на каждом шаге. Intel приучила нас к очень размеренному (а в последние годы – вообще нулевому) увеличению удельного быстродействия, когда, несмотря на ежегодную смену поколений CPU, рост производительности происходит за счёт увеличения тактовой частоты и числа вычислительных ядер. С продукцией же AMD всё обстоит совершенно по-другому. Здесь каждое новое поколение процессоров становится быстрее в первую очередь благодаря изменениям в микроархитектуре, а лишь только потом – благодаря росту частоты и увеличению числа ядер.

Тестирование выявило, что сама AMD в пределах нескольких процентов систематически завышает свои обещания по росту показателя IPC. Однако сути это не меняет. Ryzen второго поколения — с учётом IPC и роста частоты — быстрее своего предшественника примерно на 10 %. Третье поколение Ryzen прибавило в производительности ещё на 30 %. А современные процессоры пятитысячной серии принесли ещё 18 % прироста. Это значит, что продукция AMD устаревает очень и очень быстро, с одной стороны, подстёгивая развитие компьютерного рынка, но с другой – заставляя пользователей чаще обновлять системы. На протяжении всего тестирования нам то и дело приходилось указывать, что Ryzen тысячной и двухтысячной серии сегодня выглядят уже весьма неубедительно — как в творческих приложениях, так и в играх.

Более того, в двух последующих поколениях Ryzen компания AMD так разогналась, что не только отправила свои предшествующие решения в разряд устаревших, но и лихо обскакала процессоры Intel, превратив бывшего рекордсмена в безнадёжного отстающего. Если говорить о ресурсоёмких приложениях, то современных представителей серии Intel Core процессоры Ryzen с аналогичным числом ядер обогнали ещё в трёхтысячной серии, а в пятитысячной серии они утвердили своё превосходство и в играх. В результате среднее преимущество Ryzen 7 5800X перед Core i7-10700K в вычислительных задачах достигает 20 %, а превосходство в игровых приложениях находится на уровне 5 %.

В рамках этого материала мы говорили исключительно про восьмиядерные процессоры, но, помимо роста IPC и тактовых частот, у AMD есть и ещё один сильный аргумент – умение выпускать потребительские процессоры с 12 и 16 ядрами, аналогов которым среди предложений Intel попросту не существует. Это – ещё одна причина, по которой Ryzen заслуживают почёта и славы.

Но финалом этой статьи мы бы хотели сделать два очень показательных числа, ради которых всё это тестирование и затевалось. А именно: самый современный старший восьмиядерник Ryzen 7 5800X обходит по производительности флагманский Ryzen 7 первого поколения на 69 %, если говорить о приложениях, и на 52 % – если говорить об играх в разрешении Full HD с мощной графической картой (в скобках при этом заметим, что при сравнении Ryzen 7 5800X с Ryzen 7 2700X эти числа останутся тоже весьма убедительными – 53 и 36 % соответственно).

 
← Предыдущая страница
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
⇣ Комментарии
Прежде чем оставить комментарий, пожалуйста, ознакомьтесь с правилами комментирования. Оставляя комментарий, вы подтверждаете ваше согласие с данными правилами и осознаете возможную ответственность за их нарушение.
Все комментарии премодерируются.
Комментарии загружаются...
window-new
Soft
Hard
Тренды 🔥
Дуров решил вернуть криптовалюты к истокам — для Telegram создадут криптокошельки и криптобиржу 6 ч.
Мультиплеер оригинальной Dark Souls 2 на ПК заработал после 10 месяцев простоя 10 ч.
Sony подтвердила раздачу Mass Effect Legendary Edition и Biomutant подписчикам PS Plus в декабре 11 ч.
В глазах критиков супергеройская тактика Marvel’s Midnight Suns оказалась гибридом XCOM и Persona 5 — к лучшему или худшему 12 ч.
«Ростелеком-ЦОД» и КРОК займутся импортозамещением в области ITSM 13 ч.
Криптоброкер Genesis заявил, что всеми силами старается избежать банкротства 14 ч.
Объём донатов игровым стримерам в России вырос на 20 % 15 ч.
«Это игра на следующие 10–20 лет»: Тодд Говард надеется, что The Elder Scrolls VI будет таким же долгожителем, как Skyrim 17 ч.
My.Games ищет покупателей на игры, зависящие от лицензий зарубежных компаний 17 ч.
Запись полного прохождения и первый обзор хоррора The Callisto Protocol от создателя Dead Space попали в Сеть до релиза 17 ч.