Самый прочный в мире аккумулятор, разработанный учёными Технического университета Чалмерса (CTH) в Швеции, может увеличить запас хода электромобилей на 70 % и открыть путь к созданию мобильных устройств тоньше банковской карты. Уникальность технологии заключается в использовании углеродного волокна в качестве электродов, что позволяет исключить металлы, такие как мeдь и алюминий, увеличивающие массу. Это может стать решающим фактором в преодолении ключевого барьера на пути к масштабной электрификации транспорта — ограниченного запаса хода.
Несмотря на растущую популярность электромобилей, переход на полностью электрифицированный транспорт, свободный от ископаемого топлива, остаётся задачей с множеством неизвестных. Особенно остро эта проблема стоит в сфере дальних перевозок, осуществляемых морским и воздушным транспортом, требующим энергоёмкого, но лёгкого топлива, способного обеспечить нужный запас энергии. Традиционные аккумуляторы, хотя и экологичнее, но значительно уступают ископаемому топливу по энергоёмкости и весу.
Структурные аккумуляторы предлагают элегантное решение этой многогранной проблемы благодаря способности выполнять несущую функцию в конструкции устройства, превращаясь из «мёртвого груза» в функциональный элемент. Для транспортных средств это означает не только снижение общего веса, но и уменьшение энергопотребления, что напрямую влияет на увеличение запаса хода.
Исследовательская группа под руководством Лейфа Аспа (Leif Asp), профессора материаловедения и вычислительной механики в CTH, подтвердила, что углеродные волокна могут накапливать электрическую энергию и использоваться в качестве электродов в литийионных батареях. К 2021 году группа учёных повысила прочность и электрическую ёмкость батареи до плотности энергии 24 Вт·ч/кг, которая в новых отчётах была увеличена до 30 Вт·ч/кг.
Хотя эти значения всё ещё уступают стандартным литийионным аккумуляторам, важно отметить, что структурные аккумуляторы не обязательно должны достигать таких же высоких показателей ёмкости, чтобы быть эффективными. Их главное преимущество заключается в многофункциональности и способности интегрироваться в конструкцию устройства, что позволяет достичь значительного снижения общего веса и повышения энергоэффективности. «Наши расчёты показывают, что электромобили могли бы проезжать до 70 % больше, чем сегодня, если бы они были оснащены конкурентоспособными структурными аккумуляторами», — говорится в заявлении Аспа.
Структурный аккумулятор, разработанный в CTH, изготовлен из композитного материала и использует углеродные волокна для положительного и отрицательного электродов. В предыдущих версиях батареи сердцевина положительного электрода была сделана из алюминиевой фольги. В новой версии исследователи применили инновационный подход и покрыли углеродные волокна литий-железо-фосфатом (LFP), что позволило значительно повысить эффективность и прочность батареи. Углеродное волокно в данной конструкции служит не только электродом, но и армирующим элементом, коллектором тока и основой для накопления лития на катоде, одновременно выступая в роли электрического коллектора и активного материала в аноде. Это позволяет создавать аккумулятор без использования традиционных материалов, таких как мeдь или алюминий.
Исследователям также удалось повысить жёсткость аккумулятора, что позволяет ему выдерживать нагрузки, сопоставимые с алюминием, но при значительно меньшем весе. «Можно представить, что мобильные телефоны толщиной с кредитную карту или ноутбуки, весящие вдвое меньше нынешних, появятся совсем скоро. Потребуются крупные инвестиции, чтобы удовлетворить сложные энергетические потребности транспортной отрасли, но именно в этой сфере данная технология может произвести наиболее значительный эффект», — заявил Асп.
Инновационный аспект разработки состоит ещё и в том, что ионы лития в аккумуляторе перемещаются через полутвёрдый электролит, что существенно снижает риск возгорания — это критически важное преимущество с точки зрения безопасности, особенно в транспортных средствах. Однако на данный момент аккумулятор не может обеспечивать высокую мощность, и это направление стало одним из приоритетных для команды учёных.
Источники: