⇣ Содержание
Опрос
|
реклама
Самое интересное в новостях
Обзор процессора Intel Core i9-10980XE Extreme Edition: налетай — подешевело
Чуть более недели назад мы познакомились с процессором Ryzen 9 3950X, который вызвал бурю эмоций не только у сторонников или противников продукции AMD, но и у тех пользователей, которые просто заинтересованы в высокой производительности вне зависимости от её идеологической окрашенности. И это закономерно: флагманская модель для платформы Socket AM4 вызывает неподдельный интерес не только своими запредельными для мира массовых систем характеристиками, но и тем, как эти характеристики соотносятся с ценой. Ведь если после поступления в продажу Ryzen 9 3950X будет продаваться по той цене, которую для него пообещала AMD, то получится, что высокопроизводительную рабочую станцию уровня HEDT можно будет собрать в два с лишним раза дешевле, чем раньше. Вполне естественно, что столь решительные действия AMD не могут остаться без последствий, тем более что компании удалось решить сразу три важные задачи. Во-первых, она сделала многоядерные процессоры доступными для обычных пользователей, которые смогут теперь устанавливать их в привычные массовые платформы. Во-вторых, ей удалось добиться того, чтобы при выборе между 8 и 12 или 16 ядрами покупатели могли руководствоваться простыми соображениями целесообразности и не отметали многоядерные варианты из-за их заградительной цены. И в-третьих, заодно AMD предложила полностью переосмыслить всю концепцию HEDT, сделав так, чтобы энтузиасты, нуждающиеся в запредельных вычислительных ресурсах и готовые вкладывать в них значительные средства, смогли теперь рассчитывать и на 32-ядерные, и даже на 64-ядерные процессоры. Такие кардинальные изменения конъюнктуры не могли пройти в стороне от Intel, а её платформа LGA2066 оказалась в числе главных «пострадавших» от агрессивных манёвров конкурента. Фактически появление доступного 16-ядерника Ryzen 9 3950X развеяло вокруг LGA2066 всю атмосферу премиальности и элитарности, которую микропроцессорный гигант старательно создавал в течение последних лет. Вышло так, что HEDT-процессоры Intel Core X, в сущности, перестали быть таковыми, поскольку новый Ryzen 9 3950X абсолютно на равных соперничает с куда более дорогими LGA2066-флагманами. Ответные меры не заставили себя долго ждать. Сегодня Intel перевыпускает свою платформу LGA2066, но уже в новом качестве. С этого момента мы больше не будем говорить о ней как о каком-то особом варианте для высококлассных рабочих станций. Теперь это – решение попроще, которое в двух словах можно охарактеризовать как всё ещё не массовую, но уже и не хай-энд-платформу для профессиональных компьютеров, подходящих для создания и обработки цифрового контента. Такое перерождение происходит с LGA2066 на фоне выпуска совместимых с ней процессоров Core × десятитысячной серии, проходящих под кодовым названием Cascade Lake-X. Но на самом деле никаких крупномасштабных нововведений они с собой не приносят. Это всё те же 14-нм процессоры с микроархитектурой родом из 2015 года и числом ядер, не превышающим 18, как и их предшественники Skylake-X и Skylake-X Refresh. Но при этом стоить Cascade Lake-X будут совсем других денег. Фактически Intel срезала цены вдвое, благодаря чему 18-ядерного «тяжеловеса» с четырёхканальной DDR4 SDRAM и 48 линиями PCI Express можно будет получить в своё распоряжение (по крайней мере, в теории), уложившись в $1 000. И это, конечно же, меняет если не всё, то очень многое. В этом материале мы как раз и попробуем проанализировать, как подвергшиеся жёсткой уценке многоядерные процессоры Intel смотрятся на фоне старших представителей семейства Ryzen 3000. Новые LGA2066-процессоры Cascade Lake-X отличаются от предшественников не только ценами, хотя это, безусловно, их главный и самый впечатляющий козырь. Тем не менее по сравнению с выпущенными год назад чипами Core × серии 9000 они также могут предложить увеличенные тактовые частоты, улучшенную технологию Turbo Boost 3.0, поддержку больших объёмов более скоростной памяти, возросшее количество линий PCI Express 3.0, аппаратную защиту от некоторых уязвимостей и новые инструкции, известные под обобщённым названием DL Boost (Deep Learning – «глубокое обучение»). При этом, что совершенно нетипично для Intel, Cascade Lake-X сохраняют совместимость с уже выпущенными LGA2066-материнскими платами, продлевая их жизненный цикл ещё как минимум на один год. Для того чтобы показать, как в течение последних трёх лет развивается платформа LGA2066, мы собрали в одной таблице три последних поколения Core X. Все эти процессоры могут устанавливаться в одни и те же материнские платы с набором системной логики X299.
Перечисленные в таблице модели CPU, в том числе и новые Cascade Lake-X, основываются на микроархитектуре Skylake и производятся по техпроцессу с нормами 14 нм. Какая конкретно версия этой технологии применена в случае Core X, относящихся к серии 10000, Intel не конкретизирует, но по достаточно высоким тактовым частотам логично предположить, что «плюсов» после обозначения норм техпроцесса тут как минимум два. Отсутствие каких-либо заметных технологических улучшений не даёт компании Intel наращивать число ядер. В LGA2066-процессорах снова используется кристалл HCC серверного происхождения, и в нём предусмотрено лишь 18 ядер. Теоретически в распоряжении у микропроцессорного гиганта есть и более крупный 28-ядерный кристалл XCC, но его проникновение в платформу LGA2066 маловероятно из-за его гигантского размера (примерно 32,1 × 21,6 мм) и высокой себестоимости. В результате основное внимание в приведённой таблице приковывает к себе колонка с ценами: ещё бы, ведь процессоры нового поколения почти вдвое дешевле своих предшественников. В то время как в прошлых поколениях Core × компания Intel просила за одно ядро в среднем $103, теперь средняя удельная цена ядра упала до $57, вплотную приблизившись к стоимости одного ядра в массовых процессорах для платформы LGA1151. В результате новый 18-ядерный Core i9-10980XE теперь можно будет купить дешевле, чем 10-ядерный Core i9-9900X прошлого поколения, а обновлённая 10-ядерная модель Core i9-10900X почти сравнялась по цене с восьмиядерным пятигигагерцевым процессором Core i9-9900KS для массового сегмента. Иными словами, Cascade Lake-X должны стать намного доступнее своих предшественников, что наверняка сделает их и существенно популярнее. Intel объясняет такие перемены в позиционировании тем, что компания решила сделать переход на более функциональную платформу с лучшими возможностями расширения привлекательным для широкой аудитории пользователей. Но мы-то знаем, что явилось истинной причиной такой внезапной щедрости. Эту причину выдаёт и отсутствие в модельном ряду 16-ядерного процессора, которое не даёт сопоставить Cascade Lake-X и новый Ryzen 9 3950X напрямую. Впрочем, если судить по ценам, то Intel считает, что с дерзким 16-ядерным конкурентом вполне справится и 14-ядерный Core i9-10940X. Но это мы ещё проверим. Второй вывод, который можно сделать, глядя на спецификации Cascade Lake-X, касается того, что новые процессоры Core × серии 10000 отличаются от предшественников не так уж и заметно. Формальные характеристики новых моделей Core × достаточно близки к характеристикам предшественников, и даже рост тактовых частот, на котором заостряет внимание Intel, не производит особого впечатления. В частности, базовая частота у трёх из четырёх представителей Core × нового поколения не выросла вообще, что, впрочем, вполне закономерно с учётом отсутствия изменений в тепловом пакете, техпроцессе и микроархитектуре. Но зато некоторый прирост затронул максимальные частоты, достигаемые новыми процессорами в турборежиме. Это значит, что при частичной нагрузке Cascade Lake-X всё-таки смогут работать на более высоких скоростях, чем их предшественники. Особенно прогресс будет заметен, если сравнивать частоты при нагрузке на четыре ядра или меньше: в этом случае прирост частоты может доходить до 500 МГц. Во многом он достигается за счёт совершенствования технологии Turbo Boost Max 3.0, в рамках которой Intel исповедует примерно тот же подход, что и AMD в своей функции Precision Boost. Суть заключается в том, что на этапе производства наиболее удачные в плане частотного потенциала вычислительные ядра каждого экземпляра процессора специальным образом маркируются, а при его эксплуатации малопоточные нагрузки перенаправляются в первую очередь именно на такие ядра. Благодаря этому предельную частоту процессора, развиваемую им при работе с небольшим числом потоков, можно дополнительно нарастить, ведь достаточно гарантировать работоспособность на ней не каждого из имеющихся, а лишь конкретных, наиболее удачных вычислительных ядер. Эту хитрость компания Intel использовала в LGA2066-процессорах и ранее, но в Cascade Lake-X проводимый отбор ядер стал более тщательным и многокритериальным. Раньше в Core × помечалась лишь пара «золотых» ядер, теперь же к ним добавляется и пара «серебряных» – похуже, но тоже хороших. То есть у любого Cascade Lake-X теперь есть как минимум четыре особых ядра, которые гарантированно берут частоты выше, чем все остальные ядра в процессоре. Как следует из спецификаций, «золотые» ядра должны добавлять к максимальной достижимой в рамках Turbo Boost 2.0 частоте 200 МГц, а серебряные – 100 МГц. Intel специально оговаривает, что все преимущества технологии Turbo Boost Max 3.0 смогут раскрыться с Windows 10 версии 1909, где планировщик будет учитывать все особенности «золотых» и «серебряных» ядер. Однако увидеть обещанные спецификацией частоты 4,7-4,8 ГГц на практике можно и со старыми версиями операционной системы – в них за работу Turbo Boost Max 3.0 отвечает специальный драйвер. Наряду с более высокими турбочастотами процессоры Cascade Lake-X обещают и небольшое увеличение числа линий PCI Express. LGA2066-процессоры прошлого поколения могли предложить лишь 44 линии, новые же процессоры имеют уже по 48 линий PCI Express 3.0. Строго говоря, дополнительные линии существовали в позаимствованном из серверного сегмента процессорном кристалле и в прошлых поколениях процессоров, но наружу их впервые вывели в Core × серии 10000. Тем не менее воспользоваться ими смогут не все. Для их использования нужны новые материнские платы, а в старых LGA2066-платах Cascade Lake-X смогут предложить пользователю лишь привычное число линий – 44. Впрочем, добавление четырёх линий PCI Express 3.0 кажется довольно малозначительным преимуществом, особенно на фоне того, что процессоры Ryzen Threadripper третьего поколения предоставляют в распоряжение пользователя 56 линий PCI Express 4.0. Куда более весомым улучшением новых Cascade Lake-X представляется расширение функциональности его контроллера памяти, который получил официальную совместимость с четырёхканальной DDR4-2933 SDRAM (при установке одного модуля на канал) и поддержку стандартных небуферизованных модулей ёмкостью до 32 Гбайт. Таким образом, системы с новыми процессорами Core × стало возможно оснащать массивами памяти общим объёмом 256 Гбайт. Но память с ECC при этом всё ещё не поддерживается. И ещё одно важное обновление Cascade Lake-X, о котором необходимо упомянуть отдельно, касается исправлений части уязвимостей семейства Spectre и Meltdown. В частности, процессоры получили аппаратные заплатки от уязвимостей Spectre v2, Meltdown v3, RSRE v3a, L1TF/Foreshadow, MFBDS/RIDL, MSBDS/Fallout, MLPDS и MDSUM, что делает новые Core × одними из самых защищённых (но далеко не безгрешных) процессоров Intel. На самом деле наиболее интересные нововведения, привносимые Cascade Lake-X, лежат за рамками сухих численных спецификаций. Они приходят из серверного рынка и обусловлены тем, что Core × по кремниевой начинке всегда унифицируются с процессорами семейства Xeon. Новые Core × серии 10000 – не исключение, они используют те же самые полупроводниковые кристаллы, что и представители семейства Xeon Scalable второго поколения (Cascade Lake). А это значит, что в новые Core × могли проникнуть какие-то вещи, изначально предназначенные для сегмента суперкомпьютеров и высокопроизводительных вычислений. И такое нововведение действительно есть! Это – технология для ускорения работы с алгоритмами глубокого обучения, которая скрывается под маркетинговым названием DL Boost. В отличие от массовых процессоров Core для платформы LGA1151, процессоры Core × уже давно обладают поддержкой векторных 512-битных инструкций AVX-512. Но в Cascade Lake-X, как и у их серверных родственников, этот набор расширился за счёт подмножества команд AVX512VNNI, ориентированного на ускорение работы приложений искусственного интеллекта (ИИ). В их число входят инструкции, позволяющие многократно перемножать пары 8- и 16-битных чисел с накоплением результата, которые хорошо подходят для быстрого выполнения операции свёртки в искусственных нейронных сетях. Именно поддержка расширений AVX512VNNI и является сутью технологии DL Boost. Использование данных инструкций может значительно ускорить работу алгоритмов ИИ, которые постепенно находят применение при решении разнообразных повседневных задач: при распознавании, ретуши и постобработке изображений, распознавании речи или при отслеживании перемещений объектов на видео. В настоящее время инструкции AVX512VNNI пока не используются в массовом программном обеспечении, но их внедрение совершенно точно не за горами. ИИ-алгоритмы начинают всё активнее применяться в совершенно разноплановых приложениях, а Intel, в свою очередь, ведёт активную работу с их разработчиками, предлагая в том числе готовые библиотеки и фреймворки, оптимизированные под AVX512VNNI. По предварительным оценкам, поддержка DL Boost будет способна стать причиной более чем двукратного роста производительности при решении типовых задач ИИ. Поэтому в том, что разработчики действительно будут пользоваться этими инструкциями, нет никаких сомнений, тем более что они в скором времени станут повсеместно доступны и в процессорах Intel для массового сегмента, например AVX512VNNI уже поддерживаются в Ice Lake. Практически оценить эффективность решения задач ИИ на процессорах Cascade Lake-X можно с помощью полусинтетического теста AiXPRT, который измеряет производительность машинного обучения системы во время классификации изображений и обнаружения объектов с помощью сетей ResNet-50 и SSD-MobileNet v1. Мы использовали версию этого теста, опирающуюся на оптимизированную для работы на CPU открытую библиотеку Intel OpenVINO 2.1. Полученные в обоих случаях результаты представлены на диаграммах. Получается, что в задачах ИИ новые процессоры Cascade Lake-X действительно существенно сильнее предшественников, обеспечивая за счёт поддержки AVX512VNNI в избранных для проверки алгоритмах прирост производительности от 25 до 50 %. Ещё более впечатляюще смотрится их превосходство на фоне 16-ядерного процессора Ryzen 9 3950X, в котором инструкции AVX-512 не поддерживаются вообще. Из-за этого в задачах ИИ он оказывается в полтора-два раза медленнее нового 18-ядерного Core i9-10980XE. Хочется надеяться, что компания AMD учтёт данное упущение и в последующих поколениях Ryzen поддержка расширений AVX-512 всё-таки появится. А пока нужно учитывать, что для работы со стандартными для отрасли библиотеками машинного зрения и глубинного обучения для видеосистем флагманские процессоры Intel с технологией DL Boost подходят значительно лучше. ⇡#Core i9-10980XE в подробностях Для этого обзора наша лаборатория получила экземпляр флагманского 18-ядерного процессора Cascade Lake-X, Core i9-10980XE Extreme Edition. Именно с его помощью мы и получали практическое представление о том, как должны работать новые решения компании Intel для энтузиастов. Процессоры HEDT-сегмента, которые Intel предлагает энтузиастам, ещё в прошлом поколении целиком переехали на «средний» по размеру кристалл HCC, используемый в том числе и в процессорах Xeon с числом ядер менее 18. В новом поколении Core × в этом отношении ничего не поменялось: все Cascade Lake-X основаны на одном и том же кремнии, который содержит 18 ядер и 24,75 Мбайт L3-кеша. Кроме того, характерной особенностью конструкции таких процессоров выступает одноранговая Mesh-сеть, соединяющая ядра вместо привычной массовому пользователю кольцевой шины. Данная структура, по мнению Intel, лучше масштабируется с ростом количества ядер. Также стоит напомнить, что процессоры Core-X имеют и несколько непривычную подсистему кеш-памяти. В них каждое ядро имеет собственный вместительный L2-кеш, объёмом 1 Мбайт (вместо 512 Кбайт у Zen 2 и 256 Кбайт у Coffee Lake), но общий L3-кеш при этом сравнительно небольшой. Его объём исчисляется по принципу 1,375 Мбайт на ядро, при этом он функционирует по виктимному неинклюзивному алгоритму. Впрочем, всё это уже известные по прошлым поколениям Core-X факты. На что же действительно стоит обратить внимание, так это на частоты. Формальные спецификации дают не слишком много подробностей о том, какие скорости оказываются доступны новым процессорам при различной нагрузке, описывая лишь базовую частоту и максимум, достигаемый в турборежиме. На самом же деле технологии Turbo Boost 2.0 и Turbo Boost Max 3.0 совершенно чётко определяют максимальные частоты при нагрузке на разное число ядер.
Обратите внимание, наиболее существенное преимущество в тактовой частоте Core i9-10980XE показывает при нагрузке на 3-4 ядра. И это закономерно: на такие нагрузки теперь распространила своё влияние технология Turbo Boost Max 3.0, в то время как ранее её зона ответственности ограничивалась одно- и двухъядерными сценариями. Но стоит понимать, что в реальности частоты, обещанные в таблице, могут и не достигаться. В соответствии с тем, как работу турборежима представляет себе компания Intel, процессор выходит на них только при условии, что его энергопотребление находится в определённых рамках, существование которых связано с характеристиками теплового пакета. Предполагается, что при долговременных нагрузках LGA2066-процессоры должны потреблять не более 165 Вт (то есть не более заявленного TDP), а при кратковременных – не более 216 Вт. Если следовать этим требованиям, то Core i9-10980XE вряд ли окажется способен демонстрировать частоту около 3,8 ГГц при нагрузке на все ядра. Это нетрудно подтвердить проверкой потребления в Cinebench R20 при рендеринге с разным числом потоков. Как видите, прирост частоты Core i9-10980XE по сравнению с Core i9-9980XE влечёт за собой рост тепловыделения, причём чем он больше, тем существеннее разница. И поэтому Core i9-10980XE выходит за установленные спецификацией пределы потребления уже при нагрузке на 12 ядер. Но паниковать по этому поводу не следует. Дело в том, что слежение за уровнем потребления в подавляющем большинстве LGA2066-материнских плат либо отключено по умолчанию, либо отключается изменением одной настройки. Поэтому в реальности частоты Core i9-10980XE всё-таки будут соответствовать табличным показателям для турборежима даже в том случае, когда пользователь не захочет как-то особым образом настраивать или разгонять свою систему. Говоря о реальных частотах Cascade Lake-X, уместным будет напомнить и ещё один важный момент: эти процессоры снижают свою скорость при нагрузках, использующих AVX, AVX2 или AVX-512-инструкции. Это связано с тем, что 256- и 512-битные векторные инструкции вызывают у процессоров с микроархитектурой Skylake гораздо более сильный нагрев, чем все прочие команды, и многоядерные CPU при их исполнении могут легко перегреться. Поэтому в новых Core X, так же как и раньше, заложена корректировка тактовой частоты, вступающая в силу при выполнении векторных инструкций. AVX- и AVX2-инструкции снижают частоту Core i9-10980XE на 500 МГц, а AVX-512-инструкции – на 1000 МГц. Иными словами, при полной AVX/AVX2-нагрузке на все 18 ядер частота Core i9-10980XE падает до 3,3 ГГц, а в случае AVX-512-нагрузки – до 2,8 ГГц. Кроме того, соединяющая ядра процессора Mesh-сеть, как и непосредственно связанные с ней блоки L3-кеша, работают в Cascade Lake-X на своей собственной частоте. И эта частота тоже не внушает оптимизма: как и раньше, она осталась на уровне 2,4 ГГц. По этой причине новые LGA2066-процессоры по латентности L3-кеша и памяти продолжают уступать LGA1151-альтернативам, хотя и значительно превосходят их по пропускной способности памяти благодаря использованию четырёхканальной, а не двухканальной DDR4 SDRAM. Но конечно, большинству пользователей все такие нюансы малоинтересны, а главный вопрос заключается в том, сможет ли новый 18-ядерник Intel достойно противостоять флагманскому представителю серии Ryzen – 16-ядерному процессору Ryzen 9 3950X. И если судить по формальным спецификациям, то у Core i9-10980XE есть хорошие шансы оказаться сильнее.
Конечно, 18-ядерник Intel дороже, причём он требует заодно и покупки более дорогой LGA2066-материнской платы, даже если сравнивать с Socket AM4-материнками на базе чипсета X570. Но зато Core i9-10980XE предлагает подсистему памяти с более высокой пропускной способностью и больше линий PCI Express для подключения разнообразного оборудования (видеокарт, NVMe-накопителей и проч.). Что же касается «грубой» вычислительной мощности, то по этому показателю выделить однозначного лидера на данном этапе невозможно. С точки зрения IPC (числа исполняемых за такт инструкций) ни одна из микроархитектур – ни Zen2, ни Skylake – не может похвастать явным превосходством, а по числу исполняемых потоков и тактовым частотам Ryzen 9 3950X и Core i9-10980XE достаточно близки. В последнее время нам то и дело приходится констатировать, что разгон, как доступное энтузиастам средство увеличения производительности, себя изжил. Новейшие процессоры авторства как AMD, так и Intel, по крайней мере если говорить о флагманских моделях, доходят до пользователей без какого-либо дополнительного частотного потенциала. Всё, на что способен кремний новейших CPU, теперь, как правило, выжимается производителем на заводе с тем, чтобы передать в руки пользователя уже максимально разогнанный процессор. Платформа LGA2066 в этом плане является последним прибежищем олдскульного разгона, по крайней мере такое впечатление производили процессоры прошлых поколений. Но и Cascade Lake-X оказывается достойным продолжателем былых традиций. Частоты новых представителей серии Core × выросли относительно предшественников не так уж и сильно, чтобы полностью выбрать весь бюджет, представляемый 14-нм техпроцессом. К тому же за те пять лет, которые Intel эксплуатирует это литографическое разрешение, технология значительно прогрессировала, и от сегодняшних полупроводниковых кристаллов можно ждать даже лучших достижений по сравнению с Skylake-X и Skylake-X Refresh. При разгоне старшего представителя семейства Cascade Lake-X на практике мы увидели уже знакомую и отрадную картину: частотный потенциал Core i9-10980XE достаточен для того, чтобы не быть ограничением на пути оверклокинга. Этот процессор отзывчиво реагирует на приращение напряжения питания, и главной сложностью выступает лишь рост тепловыделения, бороться с которым можно совершенствованием системы охлаждения. Ещё в прошлом поколении процессоров для LGA2066 компания Intel отказалась от использования полимерного термоинтерфейса, и в Cascade Lake-X, как и в Skylake-X Refresh, сопряжение теплорассеивающей крышки и полупроводникового кристалла выполнено при помощи бесфлюсовой пайки. Благодаря этому эффективность теплоотвода у Core i9-10980XE получается выше, чем у процессоров Skylake-X двухгодичной давности. Если учесть всё сказанное, неудивительно, что новый 18-ядерник совершенно не разочаровал. С повышением напряжения VCORE до 1,075 В этот процессор смог похвастать стабильной работой на частоте 4,5 ГГц, что, между прочим, почти на 20 % превышает его турбочастоту при нагрузке на все ядра в штатном режиме. Но здесь нужно упомянуть две важные детали. Во-первых, тепловыделение процессора в таком состоянии может достигать 350 Вт, по крайней мере такую теплоотдачу показывал Core i9-10980XE при прохождении стресс-тестирования в Prime95 29.8 (без AVX). Чтобы отвести их, нужна достаточно мощная система охлаждения, желательно жидкостного типа. Мы, например, для тестов пользовались СЖО NZXT Kraken X62 с радиатором форм-фактора 280 мм. Но даже в этом случае нагрев достигал 94 градусов при максимально разрешённой для Cascade Lake-X температуре 110 градусов. Второй нюанс касается того, что речь о 4,5 ГГц здесь идёт исключительно в контексте нагрузки, не использующей никакие AVX-инструкции. Работа с 256-битными регистрами вызывает у процессоров Intel очень серьёзный нагрев, и поэтому, чтобы избежать температурного троттлинга, в обязательном порядке приходится прибегать к функции AVX Negative Offset, которая позволяет снизить частоту процессора при работе с AVX и AVX2. Для Core i9-10980XE, например, оказалась необходима поправка на 500 МГц, то есть частота процессора в AVX-режиме ограничивалась величиной 4,0 ГГц. Тест стабильности в Prime95 29.8 (с AVX2) был пройден только в этом случае, но всё равно – с тепловыделением процессора около 410 Вт и его нагревом почти до границы троттлинга. Что же касается AVX-512, то такие инструкции ещё более энергоёмки, и для них необходимо использовать ещё более значительное снижение частоты. Так, стабильная работа Core i9-10980XE без перегрева с применением AVX-512 оказалась возможна лишь на частоте 3,2 ГГц. В этом случае при стресс-тестировании температура процессора достигала 107 градусов, но он всё-таки не перегревался. Таким образом, итоговой формулой тактовой частоты Core i9-10980XE при его разгоне оказалась 4,5/4,0/3,2 ГГц (база/AVX/AVX-512). И это – очень достойный результат для 18-ядерного процессора, благодаря которому энтузиасты смогут получить от него существенно лучшее быстродействие, чем было заложено производителем. Впрочем, разгон на этом ещё не заканчивается. Для повышения быстродействия Core i9-10980XE не лишним будет заодно разогнать его L3-кеш вместе с межъядерными Mesh-соединениями, которые в представителях семейства Cascade Lake-X, как и в других LGA2066-процессорах, работают на собственной частоте 2,4 ГГц. Дело в том, что эта частота может быть заметно повышена, причём с явным положительным эффектом: её оверклокинг увеличивает скорость работы L3-кеша и подсистемы памяти, а также снижает латентности при межъядерном обмене данными. В нашем экземпляре Core i9-10980XE частоту Mesh без особых проблем удалось повысить на четверть – до 3,0 ГГц. Но для этого потребовалось поднять два вспомогательных напряжения: на Uncore-блоках процессора – на 0,1 В и на L3-кеше – на 0,175 В. Поскольку разгон Core i9-10980XE оказался весьма результативен, мы измерили его производительность не только в номинале, но и с достигнутыми оверклокерскими настройками. И как оказалось – не зря, все приложенные усилия обернулись заметным улучшением производительности.
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
|