Новости Hardware → нанотехнологии
Главная новость

TSMC считает, что без интеграции памяти в процессоры не обойтись

TSMC считает, что без интеграции памяти в процессоры не обойтись

В августе на церемонии открытия мероприятия Hot Chips 31 главе AMD Лизе Су (Lisa Su) выпала честь выступить с докладом и ответить на вопросы аудитории, но вторым приглашённым докладчиком высокого уровня стал вице-президент TSMC по разработкам Филипп Вон (Philip Wong), который обозначил будущие тенденции развития всей микропроцессорной отрасли. Непосредственно о прогрессе TSMC в освоении новых технологий он говорил скупо, сославшись лишь на готовность начать выпуск 5-нм изделий в 2020 году.

Своё выступление доктор Вон начал с утверждения о непререкаемой жизнеспособности «закона Мура» — эмпирического правила, сформулированного в шестидесятых годах прошлого века одним из основателей Intel Гордоном Муром (Gordon Moore). На стабильной части своей траектории в прошлые годы закон Мура почти что гарантировал удвоение плотности размещения транзисторов на единице площади полупроводниковой микросхемы раз в два года. После того как сама Intel «споткнулась» о собственные амбиции при освоении 10-нм технологии, эксперты всех мастей стали часто говорить, что закон Мура в его привычной трактовке себя изжил. Филипп Вон со всей ответственностью заявил, что этот закон не только жив, но даже «не заболел», чем вызвал одобрительную реакцию аудитории.

Быстрый переход

Представлен полностью рабочий процессор на транзисторах из углеродных нанотрубок

Первый полностью рабочий процессор на транзисторах из углеродных нанотрубок произнёс свои первые слова, которыми стали «Hello, World!». Статья о работе опубликована в свежем номере издания Nature. Судя по всему, речь идёт о разработке, первое сообщение о которой прозвучало месяц назад на одном из плановых мероприятий под эгидой агентства DARPA.

Процессор на транзисторах их углеродных нанотрубок (MIT)

Процессор на транзисторах их углеродных нанотрубок (MIT)

Напомним, стартап SkyWater совместно с компанией Analog Devices разрабатывают технологию изготовления многослойных микросхем на основе транзисторов из углеродных нанотрубок. На конференции DARPA в середине июня глава SkyWater и сотрудник MIT Макс Шулакер (Max Shulaker) показал первую выпущенную на производстве кремниевую пластину с процессорами на углеродных нанотрубках. Статья в Nature, судя по всему, проливает свет на эту разработку.

Макс Шулакер с кремниевой пластиной с процессорами на CNT (DARPA)

Макс Шулакер с кремниевой пластиной с процессорами на CNT (DARPA)

Использование новых материалов для выпуска чипов необходимо по той простой причине, что полупроводники исчерпали себя с точки зрения дальнейшего снижения норм технологического процесса. Это было ведь так просто! Уменьшай размер элемента на кристалле, а всё остальное ― производительность и потребление ― приложится. Увы, после снижения разрешения до единиц нанометров дальнейший прогресс стал невозможен. По крайней мере, за разумные деньги.

MIT

MIT

Углеродные нанотрубки с их чудесными электрическими свойствами и малыми размерами (до 2 нм в диаметре) обещают высокие токи и малые задержки в существенно меньшем объёме пространства затвора транзистора. Проблема в том, что углеродные нанотрубки сегодня ― это хаос в ориентации, объёме и в чистоте материала. Учёные пока не научились выращивать отдельные нанотрубки в нужном месте (между затворами транзистора) с нужной ориентацией (от одного затвора к другому) и в необходимом количестве (в идеале ― одной трубки на транзистор). Разработка SkyWater ― это попытка борьбы с хаосом, которая похожа на положительный результат.

Разработчики создали техпроцесс, который можно реализовать на современном КМОП-производстве чипов. На кристалле обычными методами проецирования и травления создаются металлические контакты в виде затворов и проводников для сигналов и питания. Затем на кристалл осаждается массив углеродных нанотрубок, на который затем наносится специальный материал, играющий роль фоторезиста. Этот материал связывает нанотрубки и затем с помощью обработки ультразвуком выламывается вместе с ними в тех местах, где они не нужны.

Там где трубки нужны ― между затворами в качестве каналов транзисторов ― дополнительно происходит обработка фоторезиста с вымыванием значительной части лишних нанотрубок. То, что остаётся, работает в качестве каналов n- или p-типа. Проводимость (тип канала) определяется нанесением поверх нанотрубок дополнительного оксидного слоя. Это аналогично легированию полупроводников, поскольку в сами нанотрубки невозможно внести дополнительные примеси.

Остаётся проблема с чистотой материала. Для полупроводников чистота важна, но это требование не столь сильно, как в случае нанотрубок. Среди углеродных нанотрубок могут попадаться металлические. Если в затворе транзистора будет даже одна металлическая нанотрубка из сотен тысяч, то она значительно изменит характеристики транзистора. Победить это невозможно, но можно возглавить. Разработчики научились использовать такие «дефектные» транзисторы при проектировании чипа и они нормально работают в логике схемы.

Итак, что же в результате получилось? На основе транзисторов на углеродных нанотрубках группа Макса Шулакера с использованием открытого набора команд RISC-V создала 32-битный процессор с 16-битной адресацией памяти. Процессор содержит свыше 14 000 транзисторов, каждый из которых полностью рабочий, что подтверждается отработкой программы с выводом фразы «Hello, world! I am RV16XNano, made from CNTs.». Транзисторы сгруппированы в инверторы, а из инверторов построена остальная необходимая логика. Процессор отрабатывает обычные 32-битные инструкции RISC-V без каких-либо модификаций. Конечно, 14K транзисторов ― это не то, что хотелось бы увидеть, но с чего-то ведь надо начинать?

Источник:

Facebook создаёт систему набора с помощью мысли

Илон Маск (Elon Musk) — не единственный, кто со своей компанией Neuralink хочет, чтобы люди начали общаться посредством мозговых волн. Facebook тоже вынашивает амбициозные планы по взаимодействию с компьютерами с использованием носимых устройств, и однажды, возможно, это позволит людям осуществлять быстрый набор текстов просто усилием мысли. В настоящее время нейробиологи из Калифорнийского университета в Сан-Франциско (UCSF) при поддержке Facebook Reality Labs продемонстрировали систему, которая может переводить речь в текст в режиме реального времени, используя только мозговую активность. Хотя это впечатляет, демонстрация также доказывает, что технологии ещё предстоит пройти долгий путь.

Эмили Маглер — инженер Facebook Reality Labs

Эмили Маглер — инженер Facebook Reality Labs

Системы интерфейса между мозгом человека и компьютером уже существуют, но они требуют, чтобы пользователи мысленно выбирали одну букву за раз на виртуальной клавиатуре — процесс, который пока происходит очень медленно. Но исследователи UCSF попытались использовать контекст, чтобы помочь машинам переводить целые слова и фразы. Учёные имплантировали электрические матрицы на поверхность мозга добровольцев, проходивших лечение от эпилепсии. Они были помещены в области мозга, связанные как с речью, так и с пониманием.

Испытуемые вслух отвечали на вопросы с несколькими вариантами ответов, например: «От нуля до 10, как вы себя чувствуете?» или «Какой из музыкальных инструментов вам не нравится слушать?» Используя только электрическую активность мозга, система затем угадывает, когда был задан вопрос, каков он был, и, исходя из этого, определяет ответы субъекта. Если правильно определяется заданный человеку вопрос, то затем система может сузить варианты возможных ответов. В результате точность оказалось в диапазоне 61–76 % против 7–20 % в случае простого угадывания. Не особенно впечатляет, но нужно понимать, что это лишь начало пути. «Наша работа показывает ценность расшифровки обеих сторон разговора: и вопросов, которые кто-то слышит, и того, что человек говорит в ответ», — сказал в своём заявлении профессор Эдвард Чанг (Edward Chang).

Эксперимент дал положительные результаты, но показал и текущие ограничения технологии. Электрические матрицы, хотя и менее навязчивы, чем зонды, используемые для других экспериментов с интерфейсом мозга, но всё же потребовали имплантации путём операционного вмешательства. И вместо того, чтобы просто произносить ответы про себя, они делали это вслух (в таком случае обычное распознавание речи было бы куда эффективнее). В довершение всего диапазон из девяти вопросов и 24 ответов крайне ограничен. Всё это бесконечно далеко от заявленной цели Facebook — перевод 100 слов в минуту случайной речи с использованием пассивных носимых устройств.

Ранний образец носимого устройства для связи между мозгом человека и компьютером без инвазивных методов

Ранний образец носимого устройства для связи между мозгом человека и компьютером без инвазивных методов

Компания, впрочем, считает, что даже ограниченная функциональность может быть крайне полезной. «Возможность декодировать даже несколько воображаемых слов, таких как „выбрать“ или „удалить“, предоставила бы совершенно новые способы взаимодействия с системами виртуальной реальности и очками дополненной реальности», — говорится в сообщении компании.

Марк Шевийе — директор команды по разработке интерфейса между мозгом и компьютером в Facebook Reality Labs

Марк Шевийе — директор команды по разработке интерфейса между мозгом и компьютером в Facebook Reality Labs

Однако движение в этом направлении не может не беспокоить людей: немногие хотели бы предоставлять Facebook (или какой-либо другой компании) прямой доступ к своему мозгу. Контекстная реклама на основе прочитанных случайных мыслей? — Почему бы и нет? Тем не менее, директор организации Reality Labs Марк Шевийе (Mark Chevillet) попытался коснуться и этой этической проблемы в своей публикации на тему: «Мы не можем предвидеть или решать все этические проблемы, связанные с этой технологией, самостоятельно. Нейроэтическое проектирование — один из ключевых столпов нашей программы. Мы хотим быть полностью открытыми в своей работе, чтобы люди могли рассказать нам о своих опасениях по поводу этой технологии».

Источники:

Немцы представили электронно-оптический модулятор для сетей 6G

Оборудование для развёртывания сотовой связи поколения 5G едва вышло из лабораторий, а компании и научные центры уже запускают исследования для разработки технологий для проектирования сетей следующего шестого поколения (6G). В компании Huawei, например, считают, что сети 6G появятся после 2030 года. С одной стороны, времени ещё много, но сети 6G обещают стать определённым вызовом для IT-индустрии, что заставляет начать углубляться в процесс уже сейчас. Так, в этом году работы по подготовке к разработке технологий 6G уже запустили компании Samsung и LG. Не отстают в этом процессе и немецкие учёные. В частности, группа специалистов из ведущих немецких исследовательских институтов представила проект необычного электронно-оптического модулятора для кабельной инфраструктуры сот следующего поколения.

IPQ/KIT

IPQ/KIT

Сети 6G потребуют увеличения плотности размещения базовых станций. При этом резко возрастёт скорость передачи и существенно снизятся задержки. Совокупность этих и многих других требований предельно увеличит нагрузку как на кабельную инфраструктуру для соединения базовых станций, так и на узлы согласования беспроводных модулей (антенн) с оптоволоконными кабелями. Чем проще будут узлы перевода радиосигнала в оптический сигнал и обратно, тем дешевле выйдет эксплуатация сетей 6G. Можно не сомневаться, что себестоимость пакетов будет отражать возросшее число сот и их потребление.

Учёные из Института фотоники и квантовой электроники KIT (IPQ), Института микроструктурных технологий (IMT), Института радиочастотного инжиниринга и электроники (IHE) и Института Фраунгофера прикладной физики твёрдых состояний (IAF) опубликовали в журнале Nature Photonics статью, в которой рассказали о разработке электронно-оптического модулятора для прямого подключения антенны к оптоволоконным кабелям. Суть изобретения заключается в том, что радиочастотный сигнал через специальную среду с наноструктурами трансформируется в фотоны. Трансформация происходит благодаря таким физическим явлениям, как возбуждение квазичастиц плазмонов ― это групповые колебания свободного электронного газа.

В поставленном эксперименте частота несущей была выбрана равной 0,29 ТГц. Скорость передачи данных в процессе опыта достигла 50 Гбит/с. Ширина пропускания модулятора равнялась 0,36 ТГц. Эта технология открывает путь к скорости передачи данных по одной оптической линии до нескольких сотен Гбайт/с. На следующем этапе учёные попытаются упростить конструкцию модулятора и связанных с ним структур для приближения разработки к стадии коммерческого проекта. Это хорошее начало для разработки беспроводных сетей будущего. Надеемся на его успешное продолжение.

Впервые на заводе выпущен монолитный чип с транзисторами из нанотрубок и PRAM

По свидетельствам частых посетителей мероприятий DARPA, выступления инженеров на этих собраниях под эгидой Министерства обороны США редко вызывают шквал аплодисментов. Но на последней конференции DARPA в прошлый вторник это произошло. Эту честь заслужил Макс Шалакер (Max Shulaker) ― старший преподаватель Массачусетского технологического института и один из основателей молодой компании SkyWater Technology. Со сцены он объявил о выпуске на производстве первой пластины с монолитными 3D-чипами с использованием транзисторов на углеродных трубках и памятью PRAM.

DARPA

DARPA

Компания SkyWater получила самый крупный грант в рамках новой программы DARPA по возрождению электронной промышленности США (ERI). Разработка SkyWater ведёт к появлению так называемых 3DSoC ― высокоинтегрированных многослойных микросхем с логикой и памятью в максимально тесной конфигурации. Но главное, что такие чипы можно будет выпускать с применением старых техпроцессов. Сочетание высокой интеграции с новыми технологиями позволит, например, 90-нм 3DSoC оказаться в 50 раз производительнее самых современных 7-нм SoC. В пятьдесят раз!


Согласно проекту, который будет финансироваться DARPA ещё 3,5 года, на выходе должен появиться техпроцесс производства монолитных 3D-чипов с 50 млн транзисторов, 4 Гбайт энергонезависимой памяти и 9 млн сквозных соединений на квадратный миллиметр. Скорость передачи данных между слоями должна достигать 50 Тбит в секунду с потреблением менее 2 пикоджоулей на бит. Именно в этом кроется секрет высочайшей производительности ― данные остаются максимально близко к логике с минимальными задержками при доступе.

DARPA

DARPA

Ключевым элементом 3DSoC являются тончайшие межслойные переходы (соединения). Они на несколько порядков тоньше, чем другие виды межслойных соединений. Это много тоньше, чем в случае многослойной памяти 3D NAND. Такое стало возможным благодаря переходу на соединения из углеродных нанотрубок. Продемонстрированная Шалакером кремниевая пластина с монолитными чипами доказала, что это не фантастика, а реальная технология, которую можно воспроизвести не в лаборатории, а на заводе.

До конца года SkyWater Technology обещает нарастить число слоёв в монолитных чипах (пока их два ― логика и память с изменяемым фазовым состоянием вещества). Также команда разработчиков будет работать над снижением уровня брака при производстве. Наконец, ведутся работы над инструментами проектирования монолитных чипов. Компания SkyWater планирует распространять технологию производства и инструменты проектирования на основе лицензий.

DARPA

DARPA

В заключение поясним, что транзисторы на углеродных трубках выпускаются в так называемом низкотемпературном техпроцессе, что подразумевает нагрев пластины до 450 градусов по Цельсию. Обычная полупроводниковая логика при изготовлении требует нагрева до 1000 градусов, что делает невозможными многослойные монолитные чипы ― логика выгорает ещё на стадии производства. Предложенный компанией SkyWater техпроцесс открывает путь к созданию многослойных решений без риска отправить продукцию в брак.

Источник:

Представлен сверхпроводящий транзистор из графена

Сказано немного громко, но учёные действительно смогли поставить эксперимент, в котором структура из графена способна переключаться из одного фазового состояния в другое под воздействием управляющего напряжения. Сразу уточним, что поставленный в Национальной лаборатории имени Лоуренса в Беркли эксперимент лишь подтвердил представленные ранее теоретические обоснования, что говорит о предельно раннем этапе исследований. Учёным ещё предстоит пройти длинный путь, чтобы транзистор из графена стал коммерческим продуктом.

Экспериментальная структура под электронным микроскопом (Guorui Chen/Berkeley Lab)

Экспериментальная структура под электронным микроскопом (Guorui Chen/Berkeley Lab)

Статья, посвящённая исследованию, опубликована в журнале Nature. Имитирующая транзистор структура представляет собой три слоя графена, каждый из которых толщиной в один атом, и два слоя нитрида бора по одному сверху и снизу графенового пакета. Также к слоям нитрида бора подведены электроды для создания управляющего поля. Для работы структуру пришлось охладить до температуры около 5 К. Поскольку теория для сверхпроводимости при высоких температурах имеет массу белых пятен, подбирать значения управляющих напряжений и температуру охлаждения пришлось экспериментально, с чем учёные успешно справились.

При одном значении напряжения (силе вертикального электромагнитного поля) «транзистор» прекращал проводить электрический ток ― находился в закрытом состоянии, а при повышении мощности или при дальнейшем снижении температуры (ниже 40 милликельвин) превращался в сверхпроводник и проводил электричество. Физика процесса при этом следующая. Строение нитрида бора шестиугольное, которое напоминает строение графена, но из-за разницы расстояний между атомами совпадает с ним только на определённых участках. При наложении структур (листов) образуется так называемая муаровая сверхрешётка с регулярно чередующимися (примерно через 10 нм) участками почти полного совпадения. «Транзисторные переходы» возможно создавать как раз в таких зонах.

Сверхрешётка из листов графена и нитрида бора (Guorui Chen/Berkeley Lab)

Муаровая сверхрешётка из листов графена и нитрида бора (Guorui Chen/Berkeley Lab)

При температуре около 5 К и до определённого значения напряжения структура представляет собой моттовский диэлектрик. В теории она должна проводить электроны, но из-за сильного взаимодействия электронов этого не происходит. Нарушить равновесие и перевести структуру в режим сверхпроводимости можно либо с помощью сильного электромагнитного поля, либо в случае дальнейшего охлаждения структуры. Тогда создадутся условия, при которых электроны локально перестанут удерживать друг друга и устремятся в «колодцы» в зонах совпадения кристаллических решёток, а «транзистор» перейдёт в открытое состояние.

Источник:

Немецкие учёные учатся записывать данные на атомном уровне

Перспектива записывать информацию на уровне манипуляций с отдельными атомами давно будоражит умы научного сообщества. Этому может помочь умение выстраивать симметричные атомные структуры, хотя путь от научных открытий к коммерческой продукции гарантированно будет долог и тернист. Радует, что первые шаги на этом пути уже сделаны, и они обнадёживают. Например, немецкие и нидерландские учёные смогли сначала теоретически, а потом экспериментально выявить связь между конкретной геометрией симметричных атомных структур и стабильностью сохраняемого ими магнитного состояния ― условно бита данных.

Экспериментально выявленная закономерность устойчивости намагниченности от симметрии атомных структур (Forschungszentrum Jülich / Universität Hamburg)

Экспериментально выявленная закономерность устойчивости намагниченности от симметрии атомных структур (Forschungszentrum Jülich / Universität Hamburg)

Расчёты на суперкомпьютере JURECA в центре Institute for Advanced Simulation показали, что тримеры ― связанные по три атома структуры ― повышают устойчивость намагниченности в состоянии высокой симметрии с дополнительными атомами. Такие структуры с тремя атомами в центре и дополнительными симметрично расположенными атомами вокруг подавляют негативный эффект анизотропного магнитного взаимодействия. Кроме увеличения магнитной устойчивости подобные структуры облегчают считывание магнитного состояния без разрушения намагниченности.

Экспериментально подтвердить расчёты удалось с помощью сканирующего туннельного микроскопа. На графике выше можно увидеть зависимость магнитной стабильности и степени симметрии в зависимости от количества дополнительных атомов-спутников и от их расположения вокруг ядра-тримеры. Отметим, в эксперименте использовались атомы железа, размещённые на поверхности из платины. Считывание состояния структуры осуществлялось соседними атомами с помощью хорошо изученных явлений изотропного магнитного взаимодействия. Это исключило прямое воздействие на группу атомов, условно хранящих информацию, и не привело к нарушению магнитной стабильности изучаемой структуры.

Если на основе проведённых экспериментов появится технология, подходящая для массового производства решений для записи информации на уровне отдельных атомов, то это позволит в разы увеличить плотность хранения информации.

Источник:

Imec показала, как можно выйти за рамки 3-нм техпроцесса и пойти дальше

На форуме ITF USA 2019 бельгийский исследовательский центр Imec показал образец важной структуры чипа, выпущенного с использованием 3-нм норм производства. Тем самым разработанная для этого технология и техпроцессы обещают открыть путь к массовому производству как 3-нм чипов, так и решений с меньшими технологическими нормами. Техпроцесс выдерживает масштабирование и может отодвинуть финал действия закона Мура.

Условная структура транзистора на кристалле и сопутствующих элементов

Условная структура транзистора на кристалле и сопутствующих элементов

Уточним, с техпроцессом с нормами 3 нм ассоциируется шаг металлических линий (проводников) шириной 21 нм. В данном случае 3 нм ― это размер минимально возможного расстояния между двумя линиями на кристалле, но другие топологические элементы на кристалле не могут и не обязаны быть соизмеримыми с максимально допустимым разрешением 3-нм проекции.

Опытную 3-нм структуру специалисты Imec последовательно изготавливали с использованием иммерсионной литографии с помощью 193-нм сканера и с помощью EVU-сканера с излучением 13,5 нм. Для 193-нм проекции с целью изготовления линий и траншей для заполнения металлами были задействованы технологии самостоятельно выравнивающихся масок (self-aligned quadrupole patterning, SAQP) с использованием четырёх масок (циклов проекции). Сканеры EUV «рисовали» блоки и структуры для сквозной (межслойной) металлизации. В целом задействованный Imec техпроцесс повторял основные шаги, свойственные изобретённому компанией IBM так называемому двойному дамасскому методу, когда иной металл вносился и проявлялся узором на базовой поверхности.

Imec сумел изготовить 3-нм слой M2 (металлический слой контактов в контактной структуре чипа)

Imec сумел изготовить 3-нм слой M2 (металлический слой контактов в контактной структуре чипа)

Основной целью эксперимента Imec было показать, что с помощью разработанного 3-нм техпроцесса можно снижать размеры таких важных элементов, как сквозные и горизонтальные контакты в металлических слоях (слой Back-End-Of-Line ― это всё, что ниже кристалла и предназначено для передачи сигналов и питания от кристалла к монтажной плате). Без уменьшения размеров контактов нечего и мечтать об уменьшении площади кристаллов. Опытная структура Imec доказала, что контактный слой M2 можно уменьшить с кратностью 0,7 и, тем самым, соблюсти пропорции между уменьшением площади кристалла и сохранением требуемого числа контактов.

В качестве материала для заполнения углублений (траншей) в полупроводнике специалисты Imec использовали рутений (Ru) и диэлектрик со значением постоянной, равной 3.0. Как мы сообщали, медь плохо подходит для мельчающих техпроцессов и учёные вынуждены переходить на новые материалы для изготовления металлических проводников и контактов в чипах. Также новые материалы и рутений в частности позволяют обходиться без защитного диффузионного барьера вокруг металлических проводников. Например, медь без этого не может, иначе электромиграция атомов меди «отравит» близлежащие кремниевые структуры.

Изображение и данные измерения опытной 3-нм контактной структуры из рутения (Imec)

Изображение и данные измерения опытной 3-нм контактной структуры из рутения (Imec)

Измерение ёмкостных и резистивных характеристик опытной 3-нм структуры показали, что их характеристики улучшились на 30 % по сравнению с предыдущим поколением структур. Надёжность в отношении проявлений электромиграции также оказалась на высоте: после 530 часов нагрева температурой 330 °C признаков электромиграции не обнаружено. В свою очередь, измерение на диэлектрический пробой выявило надёжность структуры на уровне 10 лет при температуре 100 °C. С этим можно и нужно работать.

Источник:

Applied Materials выпустила оборудование для массового производства MRAM, ReRAM и PCRAM

Компания Applied Materials ― один из ведущих поставщиков производственного оборудования для выпуска полупроводников ― начала поставлять передовые и уникальные машины для обработки кремниевых пластин. Это установки Endura Clover и Endura Impulse. Каждая из них представляет собой платформу с девятью независимыми камерами для помещения внутрь 300-мм кремниевых подложек (пластин). Все камеры способны удерживать максимально полный и чистый вакуум, в котором происходит последовательное осаждение рабочих материалов из газового состояния на кремниевую пластину.

Устновка Applied Materials

Установка Applied Materials Endura Clover

Сами по себе камеры для осаждения материала из газовой среды не являются чем-то новым. Уникальность предложения Applied Materials в том, что камер для 300-мм пластин с возможностью депонирования материалов для массового выпуска новейших видов энергонезависимой памяти MRAM, ReRAM и PCRAM до сих пор не было. Установка Endura Clover позволяет выпускать магниторезистивную память MRAM, а установка Endura Impulse нацелена на производство магниторезистивной памяти ReRAM и памяти с изменяемым фазовым состоянием вещества PCRAM.

Платформа Endura Clover MRAM даёт возможность осаждать на кремниевые пластины до пяти независимых материалов на каждую из девяти камер. Изготовление памяти MRAM в современных условиях требует создания на пластине не менее 30 различных слоёв толщиной в доли нанометров с субатомарной точностью. Новая установка позволяет проводить подобные операции без риска опасных утечек в окружающую среду. Платформа Endura Impulse позволяет совершать подобные операции, но уже с учётом комбинации материалов, необходимых для производства памяти ReRAM и PCRAM. При этом каждая из платформ наделена системами диагностики процессов и продукции, что необходимо для массового производства.


Добавим, компания Applied Materials участвует в программе DARPA ERI по возрождению производства электроники в США. В рамках программы ERI компания занимается проблемами создания технологий для производства новых видов энергонезависимой памяти. Память MRAM, ReRAM и PCRAM должны повысить энергоэффективность процессов вычисления мобильных, встраиваемых и стационарных компьютерных систем, включая перенос вычислительных процессов в память. Как видим, она с этим неплохо справляется.

Источник:

Intel представила новые инструменты для многокристальной упаковки чипов

В свете приближающегося барьера в производстве чипов, которым становится невозможность дальнейшего снижения масштаба техпроцессов, на первый план выходит многокристальная упаковка кристаллов. Производительность процессоров будущего будет измеряться сложностью или, лучше сказать, комплексностью решений. Чем больше функций будет возложено на небольшой чип процессора, тем мощнее и эффективнее будет вся платформа. При этом сам процессор будет представлять собой платформу из массы разнородных кристаллов, соединённых высокоскоростной шиной, которая будет ничуть не хуже (по скорости и потреблению), чем если был это был один монолитный кристалл. Говоря иначе, процессор станет и материнской платой и набором плат расширения, включая память, периферию и прочее.

Компания Intel уже продемонстрировала реализацию двух фирменных технологий для пространственной упаковки разнородных кристаллов в один корпус. Это технологии EMIB и Foveros. Первая представляет собой встроенные в «монтажную» подложку мосты-интерфейсы для горизонтальной компоновки кристаллов, а вторая ― это трёхмерная или стековая компоновка кристаллов с использованием, в том числе сквозных вертикальных каналов металлизации TSVs. С помощью технологии EMIB компания выпускает FPGA поколения Stratix X и гибридные процессоры Kaby Lake G, а технология Foveros будет реализована в коммерческих продуктах во второй половине текущего года. Например, с её помощью будут выпускаться ноутбучные процессоры Lakefield.

Безусловно, Intel не будет на этом останавливать и продолжит активно развивать технологии по прогрессивной упаковке кристаллов. Конкуренты занимаются тем же самым. Как TSMC, так и Samsung разрабатывают технологии для пространственной компоновки кристаллов (чиплетов) и намерены дальше тянуть одеяло новых возможностей на себя.

На днях на конференции SEMICON West компания Intel вновь показала, что её технологии для многокристальной упаковки развиваются хорошими темпами. На мероприятии представлены три технологии, реализация которых состоится в ближайшее время. Надо сказать, что все три технологии не станут индустриальными стандартами. Все разработки Intel бережёт для себя, и будет предоставлять лишь клиентам на контрактное производство.

Первой из трёх новых технологий для пространственной упаковки чиплетов заявлена Co-EMIB. Это сочетание технологии недорогих мостов-интерфейсов EMIB с чиплетами Foveros. Многокристальные стековые конструкции Foveros можно связывать горизонтальными линками EMIB в сложные системы без ухудшения пропускной способности и снижения производительности. В Intel утверждают, что задержки и пропускная способность всех многоуровневых интерфейсов будет не хуже, чем в монолитном кристалле. Фактически за счёт предельной плотности размещения разнородных кристаллов общая производительность и энергоэффективность решения и интерфейсов будут даже выше, чем в случае монолитного решения.

Впервые технология Co-EMIB может быть реализована для производства гибридных процессоров Intel для суперкомпьютера Aurora, ожидаемого к поставке в конце 2021 года (совместный проект Intel и Cray). Прототип процессора был показан на SEMICON West в виде стека из 18 небольших кристаллов на одном большом кристалле (Foveros), пара которых соединялась горизонтально соединением EMIB.

Вторая из трёх новых технологий пространственной упаковки чипов Intel называется Omni-Directional Interconnect (ODI). Эта технология не что иное, как использование интерфейсов EMIB и Foveros для горизонтального и вертикального электрического соединения кристаллов. Вынести ODI отдельным пунктом заставило то, что компания реализовала питание чиплетов в стеке с помощью вертикальных TSVs-соединений. Этот подход даст возможность эффективно развести питание. При этом сопротивление 70-мкм TSVs-каналов для питания существенно снижено, что уменьшит число необходимых для подвода питания каналов и освободит площадь на кристалле для транзисторов (например).

Наконец, третьей технологией для пространственной упаковки Intel назвала интерфейс кристалл-кристалл MDIO. Это шина Advanced Interface Bus (AIB) в виде физического уровня для межкристального обмена сигналами. Строго говоря, это второе поколение шины AIB, которую Intel разрабатывает по заказу DARPA. Первое поколение AIB было представлено в 2017 году с возможностью передавать по каждому контакту данные со скоростью 2 Гбит/с. Шина MDIO обеспечит обмен на скорости 5,4 Гбит/с. Этот линк станет конкурентом шины TSMC LIPINCON. Скорость обмена LIPINCON больше ― 8 Гбит/с, но у Intel MDIO выше показатель плотности Гбайт/с на миллиметр: 200 против 67, так что Intel заявляет о разработке, которая не хуже, чем у конкурента.

Источник:

window-new
Soft
Hard
Тренды 🔥