Сегодня 23 февраля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → авиация
Быстрый переход

Гибридные двигатели вдохнут новую жизнь в самолёты-амфибии — они позволят экономить до 85 % топлива

Инвесторы явно заждались электролёты с вертикальным взлётом и посадкой, и стали проявлять интерес к другим летательным средствам. Новые технологии способны вдохнуть в самолёты-амфибии новую жизнь, сделав перелёты намного более экологичными и удобными для пассажиров. Одно из таких предложений компании Tidal Flight уже оказалось востребовано американским авиаперевозчиком Tropic Ocean Airways, специализирующимся на посадках на воду.

 Рендеры самолёта-амфибииИсточник изображения: Tidal Flight

Визуализации самолёта-амфибии Polaris. Источник изображения: Tidal Flight

Компания Tidal Flight разрабатывает самолёт-амфибию Polaris грузоподъёмностью одна тонна или рассчитанный на 12 пассажиров. Это летающая лодка с размахом крыльев 18 м и клиновидным хвостом, на котором установлены две гондолы с электрическими двигателями и пропеллерами. Двигатели питаются от дизель-электрического генератора, работающего на экологически чистом топливе из растительного сырья. Такая схема, по словам разработчика, делает самолёт высокоэффективным, позволяя экономить до 85 % горючего.

Нетребовательность к взлётно-посадочным полосам и высокая эффективность позволят организовать маршруты на таких самолётах везде, где есть водная поверхность — и это не только экзотические острова. Компания Tropic Ocean Airways настолько вдохновилась проектом, что заключила с Tidal Flight предварительный контракт на $100 млн на поставку 20 экземпляров Polaris.

Сегодня компания испытывает модель гидросамолёта в масштабе 1:6. В конечном итоге это должно быть элегантное, тихое и современное воздушное судно взлётной массой около 5,6 т и крейсерской скоростью 300 км/ч. На одной заправке самолёт способен преодолевать 1915 км на высоте до 2100 м. Разработчик планирует поднять в воздух полномасштабный экземпляр Polaris в 2027 году, а начать эксплуатацию — в 2030-м. По мере появления более совершенных аккумуляторов или водородных силовых установок Polaris может быть переведён на них, что сделает его ещё эффективнее.

Airbus признала технологические проблемы в авиации на водородном топливе — быстро не будет

Представители французских профсоюзов заявили, что компания Airbus не сможет реализовать все пункты плана по выводу на рынок в 2035 году пассажирского самолёта на водородном топливе. В ответном заявлении Airbus это подтвердила, объяснив задержки огромными технологическими проблемами, которые никто не ожидал на этом пути.

 Рендер пассажирского самолёта Airbus на водородном топливе. Источник изображения: Airbus

Рендер пассажирского самолёта Airbus на водородном топливе. Источник изображения: Airbus

«Мы признаём, что развитие водородной экосистемы, включая инфраструктуру, производство, распределение и нормативов — правовой базы, является сложной задачей, требующей глобального сотрудничества и инвестиций, — говорится в заявлении Airbus. — Последние события указывают на то, что прогресс в области ключевых факторов, в частности, доступности водорода, получаемого из возобновляемых источников энергии в больших масштабах, идёт медленнее, чем ожидалось».

По мнению профсоюзов, планы Airbus представить к эксплуатации в 2035 году 100-местный пассажирский турбореактивный двухвинтовой самолёт на водородном топливе (как вариант — на электрических двигателях и водородных топливных ячейках) задержится на срок от 5 до 10 лет. Именно этот момент компания Airbus не стала комментировать, умолчав о новых вероятных сроках запуска водородного лайнера.

Профсоюз также сообщил, что Airbus изучает возможность остановки связанных с созданием самолёта на водородном топливе определенных ветвей проекта, не называя их. В Airbus заявили, что «постоянно оценивают технологические, нормативные и экосистемные изменения, чтобы гарантировать, что планы компании остаются амбициозными и достижимыми».

Ранее компания заявляла, что ожидала завершить разработку двигателя на водороде к 2026 году, с запуском программы испытаний в 2027 или 2028 году. Новые сроки могут быть сдвинуты на время до 10 лет.

Мировая авиационная отрасль поставила перед собой цель достичь так называемого нулевого уровня выбросов к 2050 году. Но всё больше участников отрасли ставят под сомнение этот план, поскольку альтернативные виды топлива производятся в мизерном объёме, а многие пассажиры не желают оплачивать дополнительные расходы, связанные с экологически чистыми полётами.

Прототип сверхзвукового авиалайнера Boom Supersonic XB-1 впервые преодолел скорость звука

28 января 2025 года в 09:04 по местному времени прототип сверхзвукового лайнера Boom Supersonic XB-1 впервые преодолел скорость звука, став первым американским сверхзвуковым гражданским самолётом. Прототип с лётчиком-испытателем на борту четыре минуты удерживал скорость 1,1 Маха, преодолев эту отметку ещё дважды до приземления.

 Источник изображений: Boom

Прототип Supersonic XB-1 в воздухе. Источник изображений: Boom

До этого момента лишь два гражданских самолёта преодолевали скорость звука — это франко-британские «Конкорды» и советские Ту-144. Компания Boom намерена создать сверхзвуковую гражданскую авиацию в США и, что интересно, у неё фактически нет конкурентов.

Испытательные полёты прототипа Supersonic XB-1 начались весной 2024 года. На границу сверхзвука самолёт вышел 10 января 2025 года. После анализа собранных данных пилоту-испытателю дали разрешение преодолеть звуковой барьер во время следующего вылета, что с успехом было выполнено.

Конечной целью компании Boom является создание 64-местного сверхзвукового самолёта Overture. Он будет летать на скорости 1,7 Маха. Самолёт должен быть достаточно тихим при преодолении звукового барьера и при движении на сверхзвуковой скорости, чтобы ему разрешили летать над заселённой территорией (у «Конкордов» и Ту-144 с этим были проблемы).

 Рендер 64-местного сверхзвукового лайнера «Увертюра»

Визуализация 64-местного сверхзвукового лайнера «Увертюра»

До конца года компания Boom обещает впервые запустить реактивные двигатели Overture. Прототип летает на серийном или слегка модифицированном двигателе GE J85-15. Для лайнера компания разрабатывает двигатели самостоятельно. Авиационные компании отказались выполнить эту работу. У компании Boom есть некоторые совместные проекты с Пентагоном, но проект «Увертюра» вне всяких военных контрактов.

«Речь идет об американских рабочих местах, об американском лидерстве в авиации, о построении будущего, об улучшении взаимодействия людей разных культур, — сказал глава компании, комментируя первый полёт прототипа на сверхзвуковой скорости. — Честно говоря, я думаю, что здесь есть чему порадоваться».

В США испытали первый в мире гибрид турбовентиляторного и турбореактивного двигателя с движками от электромобилей

Американский стартап Astro Mechanica провёл первые испытания революционного реактивного двигателя, который одинаково эффективно ведёт себя как на дозвуковых скоростях, так и на скоростях много выше скорости звука. Если бы такие двигатели стояли на «Конкордах», они могли бы летать на 61 % дальше, заявляют разработчики. В планах создать оснащённый такими двигателями самолёт и совершить на нём перелёт из Сан-Франциско в Токио.

 Источник изображений: Astro Mechanica

Источник изображений: Astro Mechanica

Традиционные турбовентиляторные и турбореактивные авиационные двигатели оптимизированы каждый для своей области. Первые эффективны для полётов на дозвуковых скоростях, а вторые — на сверхзвуковых. Но в каждом из них есть система подачи воздуха через компрессор для создания условий эффективного сгорания топлива и образования реактивной струи. И в каждом случае компрессия создаётся за счёт набегающего потока воздуха и работы соответствующих механизмов двигателей.

На разных скоростях объёмы потока воздуха разные — для турбовентиляторного двигателя избыточные на сверхзвуковых скоростях, а для турбореактивного двигателя недостаточные на дозвуковых. Идея Astro Mechanica в том, чтобы поручить работу по накачке гибридного двигателя воздухом компрессору на отдельных электрических двигателях, подобных тем, которые устанавливаются в электромобили (такие электродвигатели сегодня самые эффективные из выпускаемых промышленностью). В схеме Astro Mechanica адаптивный гибридный двигатель работает с участием двух независимых электродвигателей: для вентилятора в турбовентиляторном блоке и для компрессора для турбореактивной части двигателя.

Как нетрудно понять, электродвигатели могут создавать оптимальные режимы работы для турбовентиляторного блока и турбореактивного вне зависимости от развиваемой самолётом скорости. За счёт этого двигатели могут работать в трёх режимах: на дозвуковой скорости, на сверхзвуковой и даже на гиперзвуковой, когда они фактически становятся прямоточными реактивными двигателями. Недостаток или избыток воздуха компенсируются работой электродвигателей. Такая адаптивная схема подстройки режимов позволит эффективно использовать топливо на протяжении всего полёта от рулёжки к ВПП до взлёта и приземления. «Конкорды» тратили по две тонны топлива только на перемещение от места посадки к полосе для взлёта.

Некоторое время назад Astro Mechanica провела тестовый запуск третьего поколения своего адаптивного реактивного двигателя с увеличением мощности до 30 % от номинальной. В перспективе компания намерена создать прототип реактивного самолёта с четырьмя двигателями собственной разработки и двумя двигателями GE CT7 для совершения беспосадочного сверхзвукового перелёта из Сан-Франциско в Токио. Компания создана всего три года назад и насчитывает восемь сотрудников, но её амбициям позавидуют даже матёрые разработчики авиационных двигателей.

В Китае испытали прототип сверхзвукового пассажирского самолёта, который будет вдвое быстрее Ту-144

В минувшее воскресенье китайская компания Space Transportation (Lingkong Tianxing Technology) сообщила об успешных лётных испытаниях прототипа сверхзвукового пассажирского самолёта Yunxing. Продемонстрированные прототипом характеристики позволяют рассчитывать на первый полёт полноразмерного сверхзвукового воздушного судна уже в 2027 году. Лайнер сможет за 2 часа доставить пассажиров из Пекина в Нью-Йорк на скорости в 4 раза быстрее скорости звука.

 Источник изображений: Space Transportation

Источник изображений: Space Transportation

Испытания прототипа состоялись в субботу, 26 октября 2024 года. Оценка состояния двигателя будет произведена в ноябре. Судя по изображению Yunxing, у него два двигателя неизвестной конструкции. Компания не дала на этот счёт разъяснений. Можно ожидать, что планы покорить отметку 4 Маха включают использование чего-то типа прямоточных реактивных двигателей и, возможно, даже ротационных детонационных.

Полёт со скоростью более 4 Маха будет означать, что самолёт Yunxing будет двигаться со скоростью в два раза больше, чем могли обеспечить советские Ту-144 и британо-французские «Конкорды». Это серьёзный вызов в авиастроении, особенно для гражданской авиации, которая потребует окупаемости полётов. Именно сверхдорогая экономика полётов Ту-144 и «Конкордов» погубила их в первую очередь, а остальное было мелочью.

Новое поколение сверхзвуковых пассажирских самолётов разрабатывается также в США и России. Об американских проектах известно больше. В частности, в NASA на прототипе X-59 испытывает конструкторские находки, которые помогли бы уйти от одной из проблем гражданского сверхзвука — громких звуков при преодолении звукового барьера и при движении на сверхзвуковой скорости. Ряд частных компаний непосредственно заняты разработкой двигателей и планеров для создания сверхзвуковых лайнеров нового поколения. Значительных успехов пока нет ни у кого. Что касается прототипа Yunxing китайской Space Transportation, то на данный момент неизвестно, что было показано — компьютерная модель или настоящая фотография прототипа.

Airbus и Toshiba вместе разработают сверхпроводящий двигатель для самолётов будущего

Компании Airbus и Toshiba подписали соглашение о совместной разработке сверхпроводящего авиационного двигателя. Это будет лёгкая и компактная установка мощностью от 2 МВт с охлаждением и питанием на основе охлаждённого до криогенных температур жидкого водорода. Японцы уже имеют прототип такого двигателя, а европейцы готовы интегрировать его в самолётные системы.

 Источник изображения: Airbus

Источник изображения: Airbus

«Партнерство с Toshiba предоставляет уникальную возможность выйти за рамки ограничений современных частично сверхпроводящих и обычных электродвигателей, — сказал Гжегож Омбах (Grzegorz Ombach ), старший вице-президент Airbus и руководитель отдела перспективных исследований и разработок. — Благодаря этому сотрудничеству мы стремимся предложить прорывную технологию, которая могла бы открыть новые конструкторские возможности, в частности, для будущих самолетов Airbus, работающих на водороде».

Охлаждённый до температуры ниже -253 °C жидкий водород до попадания в водородные топливные ячейки будет охлаждать электродвигатель со сверхпроводящими обмотками и сверхпроводящим ротором. Это снизит потери от сопротивления обмоток и повысит соотношение вырабатываемой мощности к весу электродвигателя. По оценке Airbus, благодаря эффекту сверхпроводимости электродвигатели станут в три раза легче без потери мощности.

Водородные топливные ячейки смогут как напрямую питать электродвигатели самолётов, так и заряжать его тяговые аккумуляторы. Такой самолёт будет летать на большие расстояния, чем чисто аккумуляторный и при этом останется углеродно нейтральным, как того требует экологическая повестка. У компании Toshiba много лет имеется 2-МВт прототип подобного электродвигателя и теперь поставлена задача интегрировать его с авиационными системами.

В России также разрабатываются подобные гибридные и чисто электрические силовые установки с элементами сверхпроводимости. В частности, этим занимаются специалисты ЦИАМ.

Прототип сверхзвукового авиалайнера Boom Supersonic XB-1 обновил рекорд скорости

7 октября 2024 года демонстратор сверхзвукового реактивного самолета Boom XB-1 совершил свой пятый испытательный полет с авиабазы Мохаве, установив при этом несколько новых рекордов. Boom XB-1 — это платформа для испытания систем будущего самолета Overture, которая втрое меньше финального варианта. Конечная цель проекта — возвращение коммерческой сверхзвуковой гражданской авиации, прекратившей существование 20 лет назад.

 Прототип в воздухе. Источник изображения: Boom

Прототип в воздухе. Источник изображений: Boom

Прототип Supersonic XB-1 был допущен к испытательным полётам весной 2024 года. Программа предусматривает 20 полётов на дозвуковой скорости, пятый из которых самолёт совершил на днях. В воздухе XB-1 с пилотом-испытателем разогнался до нового потолка скорости — 791 км/ч. Также был установлен рекорд по высоте подъёма, составивший 5425 м. Во время 50-мин полёта самолёт искусственно вводили в режим вибраций, чтобы при достижении сверхзвуковых скоростей недостаточная прочность корпуса не стала сюрпризом.

Способность будущего сверхзвукового самолёта Boom Overture на 60–80 пассажиров уверенно себя чувствовать на дозвуковых скоростях решит две проблемы сверхзвуковой гражданской авиации — это раскаты грома при преодолении звукового барьера, что неприемлемо для полётов над обжитой территорией, а также необходимость в сверхдлинных взлётно-посадочных полосах. На крейсерской скорости самолёт будет разгоняться до 1,7 Маха.

 Художественное представление сверхзвукового самолёта

Художественное представление сверхзвукового самолёта Boom Overture

Добавим, испытания Supersonic XB-1 — это фактически проверка планера. На прототипе установлен штатный либо незначительно переделанный турбореактивный двигатель GE J85-15. Для Overture компания разрабатывает собственный двигатель, а это задача сложная даже для гигантов отрасли. Поэтому будущее проекта всё ещё под вопросом, хотя надо отдать ему должное — он развивается и следует плану.

Самолёты можно питать с помощью микроволнового излучения прямо в полёте, но сделать это крайне трудно

Коммерческая авиация обещает стать самым трудным направлением для декарбонизации. Ни сегодня, ни в обозримой перспективе нет источника энергии для самолётов, столь ёмкого, как ископаемое топливо. Альтернативой загрузке самолётов тоннами аккумуляторов или баками с опасным водородом могут быть беспроводные источники питания. Могут, но вряд ли ими станут — самолётам нужно очень много энергии, а её передача с земли на борт — это крайне нетривиальная задача.

 Источник изображения: McKibillo/spectrum.ieee.org

Источник изображения: McKibillo/spectrum.ieee.org

В сетевом журнале IEEE Spectrum Института инженеров электротехники и электроники (IEEE) — некоммерческой инженерной ассоциации из США — вышла, можно сказать, программная статья, посвящённая беспроводному микроволновому питанию коммерческих авиалайнеров. Автор заметки сразу признаёт, что «ничто из разработанного на сегодняшний день не может накапливать энергию так дёшево и плотно, как ископаемое топливо, или полностью удовлетворять потребности коммерческих авиаперевозок в том виде, в каком мы их знаем». Физика не запрещает использовать в авиации для передачи питания излучение. Препятствия могут быть технологическими или юридическими. Но другие альтернативы по снижению углеродного следа от самолётов кажутся ещё более провальными.

Передавать микроволновую энергию с земли на самолёт можно с помощью фазированной антенной решётки. Такая антенна способна электронным образом управлять направлением луча и фокусировать его с высокой точностью без необходимости в механических поворотных системах. Поскольку самолёт должен будет уверенно находиться в зоне видимости такой антенны, а Земля имеет форму шара, то располагать передающие антенны (решётки) необходимо примерно на удалении 200 км одна от другой. На море-океане, кстати, тоже, если мы захотим отправить самолёты с микроволновым питанием на другой континент. В случае полётов над горами антенны придётся располагать ещё гуще с учётом возможных помех. При этом каждая антенна будет вести самолёт на дальности до 100 км, после чего его подхватит другая по курсу.

Создание массива передающих антенн станет стройкой века. Средний авиалайнер с площадью фюзеляжа и крыльев около 1000 м2 будет способен нести на нижней части крыльев и корпуса приёмную антенну шириной около 30 м. С учётом наиболее оптимального для распространения в атмосфере излучения с длиной волны 5 см (оно ещё не такое короткое, чтобы поглощаться облаками и не слишком длинноволновое, чтобы требовать слишком большого приёмного элемента, равного половине длины волны), размеры передающей фазированной антенной решётки должны достигать 170 м. И так через каждые 200 км. Такое по плечу только государственным программам, но никак не частным. Много найдётся государств, готовых совершить такой подвиг? Китай не предлагать.

По уровню необходимого питания стоит сказать следующее. Во время взлёта самолёт Boeing 737 потребляет примерно 30 МВт энергии. Если мы сможем обеспечить энергию такой мощности, то она попадёт на выпрямляющую антенну (ректенну), которая должна быть изготовлена с учётом аэродинамики и встроена в нижнюю часть самолёта. Более того, максимальная передача будет происходить лишь тогда, когда самолёт будет пролетать над передающей станцией, а в остальных случаях энергия будет «бить» в переднюю и заднюю проекцию самолёта, преимущественно в кромки антенны, до предела повышая плотность передачи мощности на этих частях антенны.

Если брать в качестве примера Boeing 737 и его потребности, то на каждый квадратный сантиметр ректенны будет падать около 25 Вт. С учётом разнесения твердотельных приёмных элементов ректенны на 2,5 см (на половину длины волны), на каждый элемент будет падать около 150 Вт, что опасно близко к предельной плотности мощности любого твердотельного устройства преобразования энергии. Иными словами, пока нет твердотельных материалов, которые гарантированно и с запасом смогли бы обеспечить безопасный приём микроволновой энергии. Наконец, КПД подобных методов передачи энергии едва приблизился к 30 %, что заставляет усомниться в выгодах перехода на такую альтернативу ископаемому топливу.

Дальше, согласно прикидкам, электрическое поле вокруг самолёта будет обладать напряжённостью около 7000 В/м — всего в три раза слабее, чем в микроволновой печи. Корпус самолёта надёжно защитит пассажиров, а особенно любопытных — защитят металлические сетки на иллюминаторах, как на дверцах микроволновой печи. У птиц такой защиты не будет, но поскольку фокусирующий луч будет быстро перемещаться за самолётом, птицы просто не успеют приготовиться в воздухе. На это, как признаются разработчики передающих микроволновых систем, необходимо не меньше 10 мин. Экология особо не пострадает, но юристам компаний придётся это доказать пассажирам и законодателям.

Сомнения в целесообразности использования микроволнового излучения для передачи энергии на расстояния без проводов не мешают исследованиям в этой области. То же NASA и частные компании, а также академические учреждения проводят эксперименты с передачей микроволновой энергии из космоса. Этому способствует прогресс в области полупроводниковых технологий и твердотельных приёмных и передающих элементов. Если раньше это были громоздкие аналоговые приборы типа клистронов, то сегодня им на смену идут компактные полупроводниковые передающие платформы.

Так, в 2022 году стартап из Окленда Emrod продемонстрировал, насколько многообещающим может быть подход с использованием полупроводников. Компания провела в Германии демонстрацию для Airbus, излучив 550 Вт на расстояние 36 метров. По лучу было передано 95 % излучённой энергии, что намного лучше, чем с использованием клистронов или магнетронов. Определённо, в этом есть задел на будущее, если оно в этой сфере есть или будет.

Также остаётся подвешенным вопрос с помехами радиосигналам. Даже если микроволновый передатчик энергии сможет успешно преобразовывать 99 % волн в узкий луч, утечка 1 % всё равно будет в сто миллионов раз мощнее, чем разрешенная мощность радиосвязи в 5-см диапазоне (диапазон используется для космоса и радиолюбителей). Наверняка это не все проблемы с микроволновой передачей энергии, но даже этих достаточно, чтобы усомниться в реализуемости проектов.

К сожалению, другие альтернативы также имеют свои неустранимые недостатки. Самое перспективное из альтернативных видов обеспечения самолётов топливом — синтетическое или топливо растительного происхождения — обходится либо слишком дорого, либо оказывается вреднее в производстве, чем ископаемое. Поменять шило на мыло с увеличением ценника — это даже не бессмысленно. Это глупо. На этом фоне микроволновая передача энергии на самолёт уже не кажется безумным мероприятием. В конце концов, на заре авиации самолёты тоже считались уделом безумцев, а ведь взлетело! Во всех смыслах.

В США научились эффективно гнать авиационный керосин из древесных опилок

Учёные из Калифорнийского университета в Риверсайде разработали экономически выгодный техпроцесс производства авиационного керосина из отходов деревообрабатывающей промышленности и сельского хозяйства. По себестоимости один литр такого древесного биотоплива почти в два раза дешевле ископаемого, а по воздействию на экологию — почти в два раза чище. Это прорыв, говорят учёные, но к его реализации ещё нужно прийти.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

В настоящее время в мире используется биотопливо второго поколения, которое производится в основном из грубых отходов сельского хозяйства — из жмыха. Первое поколение, от которого уже многие отказались, производилось из чистых продуктов: кукурузы, сои, сахарного тростника и так далее. Лишать выращенных на сельхозземлях продуктов людей и животных — сомнительное решение. С грубыми отходами главной проблемой была глубокая и эффективная переработка сахаров и лигнина в составе древесины. И чем твёрже породы деревьев, тем больше в них лигнина и тем сложнее его переработка в углеродсодержащее топливо.

Команда учёных из США занималась проблемой эффективной переработки лигнина около 10 лет. В конечном итоге они добились впечатляющего успеха. Предложенный ими техпроцесс помог на 18 % увеличить выход биотоплива из кукурузного жмыха и древесины. В частности, с каждой тонны грубых отходов кукурузы в обычном случае получали 167 л топлива. Благодаря новому техпроцессу выход увеличился до 196 л. При использовании древесины тополя выход составил 287 л топлива, что почти в два раза больше, чем при переработке кукурузного жмыха старым способом.

Если вывести за скобки логистику и неготовность к массовому производству по новой технологии CELF (co-solvent enhanced lignocellulosic fractionation), то себестоимость нового биотоплива составит $3,15 за галлон (почти 3,8 литра). Для сравнения, средняя цена на авиационный керосин в США сегодня составляет примерно $6,45 за галлон, а средняя цена на авиационный керосин обычного биологического происхождения достигает $9,28. Разница впечатляет!

Тем не менее, не всё так просто. В существующих реалиях себестоимость производства перспективного биотоплива из опилок будет существенно выше. Но также сложно спорить с тем, что у него есть явные перспективы, что может ускорить внедрение новых технологий, ведь сегодня отходы древесины просто сжигают, и хорошо, если делают это для обогрева помещений и получения электрической энергии.

 Экспериментальная перегонная установка на 20 галлонов (75 л). Источник изображения: UC Riverside

Экспериментальная перегонная установка на 20 галлонов (75 л). Источник изображения: UC Riverside

В чём же секрет такой эффективной переработки? Учёные подобрали состав для предварительной обработки древесины и жмыха. Они добавляют к отходам воду с раствором тетрагидрофурана (THF) и разбавленную кислоту. Предварительное замачивание опилок и жмыха в этом растворе помогает эффективнее извлекать из сахаров и лигнина углеродную составляющую, которая затем преобразуется в авиационный керосин биологического происхождения. Такое топливо сгорает чуть лучше и с меньшими выбросами в воздух серы и твёрдых частиц. Раз уж нам нужен авиационный керосин, пусть он, хотя бы, будет чище. Работа опубликована здесь.

Лучшим топливом для экологичной авиации может стать сжатый сжиженный водород

Стремление сделать гражданскую авиацию экологически чистой практически не оставляет альтернатив для выбора топлива. На батарейках далеко не улетишь, поэтому в качестве топлива всё чаще и чаще рассматривается водород. Самолёты могут летать как на топливных ячейках, так и непосредственно на сжигании водорода. В любом случае будет стоять задача взять на борт как можно больше горючего и с этого места появляются варианты.

 Источник изображения: ZeroAvia

Источник изображения: ZeroAvia

Водород может сжижаться с использованием криогенного охлаждения (-253 °C), а может сжиматься при обычной температуре в газообразном состоянии. Так же есть варианты экзотических способов хранения водорода в пористых материалах и в соединениях, но это требует более сложных и не до конца изученных процессов.

Но есть ещё один вариант, который впервые был предложен 25 лет назад исследователями Ливерморской национальной лаборатории им. Лоуренса. Он предусматривает криогенное охлаждение водорода (сжижение) и последующее сжатие. Сжатие до примерно 240 атм позволяет поднять плотность топлива и, следовательно, запасаемой энергии. Самолёт на такой системе сможет пролететь ощутимо дальше без существенных затрат на усложнение оборудования.

Вопросами использования сжатого криогенно охлажденного водородного топлива занялась молодая компания Verne из Сан-Франциско. Сотрудники компании изучили опыт учёных из Ливерморской национальной лаборатории и провели там в прошлом году ряд натурных экспериментов. Опыты показали, что предложенное Verne решение позволяет хранить в криогенных баках под давлением на 27 % больше сжиженного водорода. В компании считают, что могут довести этот показатель до 40 %, что означает примерно такое же увеличение дальности полёта.

Другими преимуществами криогенно сжиженного водорода под давлением станет простая перекачка топлива при дозаправке (баки танкера под давлением сами заполнят топливные баки), а это колоссальная экономия на инфраструктуре аэропортов, а также более простая конструкция бака по сравнению с ёмкостью для газообразного водорода под давлением 700 бар и, наконец, происходит самоохлаждение топлива в процессе его выработки за счёт естественного расширения газов в баке.

 Опытный бак для храненния сжиженного водорода под давдением. Источник изображения: Lawrence Livermore National Labs

Опытный бак для хранения сжиженного водорода под давлением. Источник изображения: Lawrence Livermore National Labs

Но самой главной новостью стала информация о заключении компанией Verne договора о совместной разработке и испытании самолёта на криогенно сжиженном и сжатом водороде с компанией ZeroAvia. Год назад ZeroAvia организовала первый полёт самого большого гражданского самолёта на водородных топливных ячейках, и она намерена найти лучший способ использования водорода в качестве топлива для авиации. Предложение изобретателей Verne было воспринято с энтузиазмом и, возможно, оно окажется перспективным.

В Канаде испытали перспективный электродвигатель для замены реактивных на любых самолётах

Молодая канадская компания Duxion Motors сообщила об успешных наземных испытаниях перспективного авиационного электродвигателя, который обещает заменить керосиновые реактивные двигатели на самолётах всех типов. Двигатель eJet Motor запатентован и подходит для масштабирования в широких пределах, а также удобен в обслуживании и эксплуатации.

 Пример реактивной гражданской авиации

Пример реактивной гражданской авиации

Испытания прототипа прошли в Саммерсайде (остров Принца Эдуарда, Канада) и включали в себя работу как на низких оборотах, так и на высоких. Не обошлось без вездесущей светодиодной подсветки, что придало особый шарм испытаниям двигателя в темноте. О влиянии подсветки на мощность не сообщается.

Представленный канадцами двигатель относится к классу кольцевых (Rim-Driven Propulsor, RDP). Если мы не ошибаемся, первыми данный тип двигателя, правда, для гребных винтов судов, запатентовала компания General Dynamics Electric Boat. Постоянные магниты в таком двигателе расположены по ободу, к которому крепятся концы крыльчатки. Двигатель также имеет крыльчатку на обратной стороне, что делает его работу менее шумной и более эффективной.

Канадцы не сообщили характеристик прототипа, отметив, что испытания прошли успешно. Компания Duxion Motors имеет предварительную договорённость на сумму $500 млн с компанией Dymond Aerospace на поставку 200 двигателей eJet Motor для оснащения 100 беспилотных грузовых самолётов. Ожидается, что двигатели eJet Motor обеспечат тягу 38,84 кН, равную тяге керосиновых реактивных двигателей для 50-местных региональных самолётов CRJ100.

Двигатели eJet Motor могут также работать в гибридных силовых схемах и обладают целым спектром характеристик, выгодно отличающих их от двигателей на ископаемом топливе. Сегодня мировой авиационный парк насчитывает свыше 30 000 реактивных самолетов, на которые приходится 2,5 % глобальных выбросов CO2. В компании намерены с этим покончить, когда двигатели eJet Motor перейдут к массовому производству.

Компания Duxion Motors не одинока в своём стремлении дать новое чистое сердце гражданской авиации и не только. Похожие электрические двигатели создают компании Wright, RogersEV, H3x и другие менее известные. Все они демонстрируют тот или иной успех, что со временем приведёт к результату.

Японские власти выделят субсидии на создание водородной авиации

Эксперименты по использованию водорода в качестве топлива в авиации ведутся не только в контексте его непосредственного сжигания, но и в виде источника электроэнергии для топливных ячеек. Японские власти готовы выделить до $200 млн государственных субсидий на создание экологически чистой авиации, и водородный авиатранспорт данной инициативой тоже покрывается в полной мере.

 Источник изображения: Boeing

Источник изображения: Boeing

Министерство экономики, торговли и промышленности Японии, по данным Nikkei Asian Review, готовит выделение $205 млн на поддержку инициатив по разработке более экологичных силовых установок для авиационной отрасли. Из этой суммы примерно $116 млн будут направлены на субсидирование разработки водородных топливных ячеек авиационного класса. Они требуют более высокой отдачи, чем применяемые в наземном транспорте. В специальных реакторах водород используется для генерирования электричества, в качестве выхлопа при этом образуется водяной пар. Генерируемая электроэнергия уже используется для вращения тяговых электродвигателей, в этом отношении авиационные системы не должны принципиально отличаться от наземных.

В отличие от аккумуляторных электрических силовых установок, водородные топливные ячейки обладают меньшей массой, что для авиации имеет принципиально важное значение. Оставшиеся $90 млн субсидий будут направлены на разработку систем управления авиационных двигателей, которые позволяют снизить расход топлива. Airbus собирается вывести на рынок серийный авиалайнер на водороде к 2035 году. Японская промышленность должна заниматься профильными разработками уже сейчас, чтобы в следующем десятилетии не оказаться в числе отстающих. К 2030 году власти Японии рассчитывают увидеть прототипы соответствующих решений в исполнении получателей субсидий, которые пока не определены, но будут найдены до конца текущего года. В США и Европе прототипы летательных аппаратов с водородными топливными ячейками уже испытываются.

Сейчас японские поставщики снабжают до 15 % компонентов для авиалайнеров серии Boeing 787 и до 35 % для планерной части. В эпоху перехода на водородное топливо японские компании тоже не хотят оставаться в стороне от формирования международных стандартов в этой сфере. Члены Международной организации гражданской авиации поставили перед собой цель добиться осуществления международных перелётов с углеродной нейтральностью к 2050 году. В 2021 году авиационные перелёты обеспечили до 2 % всех выбросов углекислого газа на планете, по расчётам специалистов.

Boom Supersonic начала рулёжные испытания прототипа сверхзвукового самолёта XB-1 — первый полёт не за горами

Американский стартап Boom Supersonic приступил к рулёжным испытаниям прототипа сверхзвукового самолёта XB-1. Это приближает первый испытательный полёт двухместного самолёта, способного летать на скорости до 1,7 Маха. Ожидается, что первый пилотируемый полёт XB-1 состоится до конца текущего года. Федеральное агентство гражданской авиации США уже выдало компании соответствующее разрешение.

 Источник изображения: Boom Supersonic

Источник изображения: Boom Supersonic

Прототип XB-1 в три раза меньше будущего сверхзвукового пассажирского лайнера «Увертюра» (Overture), который компания надеется создать для возрождения коммерческой сверхзвуковой авиации. Летом прошлого года компания American Airlines заключила с Boom Supersonic предварительный контракт на изготовление 20 таких самолётов. Но пройдёт ещё много лет, прежде чем они поднимутся в небо. В свой первый полёт прототип XB-1 обещал отправиться в далёком 2017 году, но произойдёт это только сейчас спустя шесть лет после первоначальных планов.

 Рендер сверхзвукового самолёта «Увертюра»

Рендер сверхзвукового самолёта «Увертюра»

Если XB-1 поднимется в небо в этом году, то такое событие станет своего рода данью юбилею последнего полёта «Конкорда». Европейские сверхзвуковые лайнер Concorde вывели из эксплуатации в 2003 году. Целый спектр недостатков «Конкордов» оказался весомее достоинств скоростных гражданских перелётов. Дизайн и конструктивные особенности XB-1 и будущей «Увертюры» ликвидируют один из них — громкий переход на сверхзвуковой режим полёта. Переход звукового барьера у «Увертюры» должен быть не громче хлопка закрывающейся двери автомобиля.

Прототип XB-1 прошёл все наземные испытания (кроме рулёжных) и это позволило FAA выдать компании экспериментальный сертификат лётной годности и, тем самым, открыл ему дорогу в небо. Пилотировать прототип будет лётчик-испытатель компании Тристан «Гепетто» Бранденбург (Tristan «Gepetto» Brandenburg). Вторым пилотом будет лётчик-испытатель Билл «Док» Шумейкер (Bill «Doc» Shoemaker).

Наземные испытания и первые полёты пройдут в аэрокосмическом порту Мохаве (штат Калифорния), где испытывают свои решения множество компаний из США. Прототип XB-1 оснащён тремя двигателями General Electric J85, работающими на экологически чистом авиационном топливе. Для самолёта «Увертюра» разрабатываются свои двигатели, над которыми компании приходится работать самостоятельно. Ведущие разработчики с мировым именем посчитали этот проект неперспективным и отказались работать с Boom Supersonic.

Возможно, первый полёт аппарата изменит отношение гигантов к проекту. Осталось его дождаться и это событие явно не за горами.

Китайская CATL создала авиационное подразделение — оно займётся электрическими авиалайнерами

Один из лидеров производства тяговых аккумуляторов для электромобилей — китайская CATL — создала совместное подразделение с одним из китайских авипроизводителей для разработки электрических самолётов. Возможно гражданская электрическая авиация ближе, чем нам казалось: у CATL уже есть главный ингредиент для электросамолётов — аккумулятор с рекордной плотностью хранения энергии.

 Проект электросамолёта ES-30 компании Heart Aerospace (как пример гражданской электроавиации). Источник изображения:Heart Aerospace

Проект электросамолёта ES-30 компании Heart Aerospace (как пример гражданской электроавиации). Источник изображения:Heart Aerospace

О создании совместного предприятия сообщило новостное агентство Yicai Global. Компания CATL и её партнёр — государственная китайская авиастроительная компания Commercial Aircraft Corporation of China (COMAC) — пока не выступили с комментариями. Но планы партнёров довольно прозрачны. Ещё в апреле CATL представила аккумуляторы с рекордной плотностью хранения энергии, характеристики которых допускают их использование в самолётах в качестве тяговых. Тогда же компания сообщила, что сотрудничает с авиапроизводителями для адаптации новых батарей к авиационным системам.

По данным источника, авиационное подразделение CATL (совместное предприятие) организовано на базе Шанхайского университета Цзяо Тун (Shanghai Jiao Tong University Enterprise Development group). В работе над новыми проектами будет участвовать бывший главный конструктор узкофюзеляжного самолёта C919 Цянь Чжунъян (Qian Zhonhyan). Подобное не оставляет сомнений, что подразделение CATL будет создавать аккумуляторные подсистемы также для большой гражданской авиации, а не только для маломестных аэротакси.

 Первые батареи для гражданских электросамолётов. Источник изображения: CATL

Первые батареи для гражданских электросамолётов. Источник изображения: CATL

По мнению Илона Маска, для жизнеспособности электролётов с вертикальными взлётом и посадкой аккумуляторам необходимо преодолеть рубеж плотности хранения энергии в 400 Вт·ч/кг. Новая батарея CATL обещает плотность хранения энергии на уровне 500 Вт·ч/кг. Если этого хватает для аэротакси, то этого будет достаточно и для открытия дороги в небо электросамолётам классической планерной схемы.

Airbus протестировала водородные технологии для авиалайнеров, изначально предназначенные космическим ракетам ArianeGroup

Компания Airbus настойчиво занимается разработкой и тестированием «зелёных» авиационных технологий, реализуя крупные проекты. Новые решения позволяют не только использовать полностью водородную топливную систему, но и применять в лайнерах водородную вспомогательную силовую установку (APU) — вместо т.н. «скрытого» авиадвигателя, применяемого для электроснабжения самолётов. Часть новых разработок базируются на космических технологиях.

 Источник изображения: Airbus

Источник изображения: Airbus

Полностью «водородная» экономика требует не только простой замены одного топлива на другое, но и полного пересмотра двигательной и энергетической системы авиалайнеров. При сотрудничестве с ArianeGroup (совместным предприятием Airbus и Safran), компания Airbus завершила тестирование полнофункциональной системы подачи водорода в газотурбинные двигатели самолёта. Проект HyPERION начали реализовать в 2020 году, он предусматривает появление коммерческих водородных лайнеров к 2035 году. Тем не менее, для тестирования безопасности технологий и выявления недочётов, требующих доработки, требуется провести дополнительные работы.

Проект предусматривает использование опыта Airbus в строительстве самолётов и применение топливных систем на жидком водороде, разработанных ArianeGroup для космических ракет семейства Ariane. В новой системе водород хранится в состоянии сверхохлаждённой жидкости в криогенных ёмкостях. После впрыска в топливную систему он подогревается до газообразного состояния и доставляется в двигатели с оптимальной температурой и давлением. 12 мая ArianeGroup совместно с французской ONERA провела ряд испытаний совместимости материалов и технологий с использованием электронасоса, газового генератора и теплообменников, изначально предназначавшихся для ракет Ariane.

Ещё одним важным проектом занимается подразделение Airbus UpNext — оно работает над программой, предусматривающей замену «скрытого» авиадвигателя авиалайнеров на водородные топливные ячейки. Хотя большинство людей принимают во внимание только двигатели самолёта, расположенные под крыльями, в хвосте крупных лайнеров обычно имеется ещё один, приводящий в действие вспомогательную силовую установку (APU). Реактивный двигатель подключён к генератору и обеспечивает лайнеру освещение, работу камбуза, питание бортовой авионики и даже поддержание на борту необходимого давления, и т.п. В Airbus намерены создать к 2025 году прототип HyPower, который заменит APU на Airbus 330 — он будет использовать водородные топливные ячейки, что позволит обеспечивать авиалайнер электроэнергией без лишнего шума и с пониженными выбросами.

 Источник изображения: Airbus

Источник изображения: Airbus

Новые тесты, по данным Airbus, являются очередным шагом к демонстрационному полёту, который должен состояться к концу 2025 года. В числе прочего планируется показать и процесс заправки авиалайнера, который, с учётом физических свойств водорода, сам по себе является весьма сложной задачей. Ожидается, что систему продемонстрируют в реалистичных условиях — авиалайнер полетит на высоте 7620 м в течение часа с 10 кг водородного топлива на борту.

В январе 2023 года появились новости о том, что компания ZeroAvia подняла в воздух крупнейший в мире пассажирский самолёт на водородной тяге — в воздухе он продержался 10 минут и значительно уступает размерами крупным авиалайнерам вроде Boeing и Airbus.


window-new
Soft
Hard
Тренды 🔥
Новая статья: Keep Driving — великолепная игра, сотканная из странных идей. Рецензия 3 ч.
Количество слияний и поглощений в российском IT-секторе в 2024 году выросло на треть 4 ч.
В рекордной краже криптовалюты у ByBit обвинили северокорейских хакеров 13 ч.
OpenAI провела зачистку ChatGPT от аккаунтов из Китая и Северной Кореи, подозреваемых во вредоносной деятельности 13 ч.
«Нам просто нужно больше мощностей»: OpenAI постепенно поборет зависимость от Microsoft 13 ч.
Трамповская криптооттепель: Coinbase удалось малой кровью отделаться от иска Комиссии по ценным бумагам США 14 ч.
Apple выпустила первую бету iOS 18.4, в которой появились «приоритетные уведомления» 16 ч.
Новая статья: Kingdom Come: Deliverance II — ролевое вознесение. Рецензия 22-02 00:03
Apple отключила сквозное шифрование в iCloud по требованию властей Великобритании 21-02 23:43
Взрывной платформер Shotgun Cop Man от создателя My Friend Pedro предложит спуститься в ад и арестовать Дьявола — трейлер и демоверсия в Steam 21-02 22:01
Lenovo сообщила о двузначном росте выручки за III финансовый квартал по всем подразделениям — ISG снова в плюсе благодаря ИИ 4 ч.
В облаке Google Cloud появились инстансы A4X на базе суперускорителей NVIDIA GB200 NVL72 4 ч.
STMicroelectronics представила фотонный чип для 1,6-Тбит/с сетей 4 ч.
Несмотря на риск землетрясений, геотермальную энергию ждёт светлое будущее, считают учёные 5 ч.
Размышляющий ИИ DeepSeek R1 встроят в смартфоны Infinix Note 50 8 ч.
Nvidia признала, что не знает, когда сможет решить все проблемы видеокарт GeForce RTX 5000 10 ч.
Huawei захватила больше половины рынка складных смартфонов в Китае — на втором месте Honor 11 ч.
В Asus разогнали GeForce RTX 5090 до 3,5 ГГц и установили несколько рекордов 12 ч.
Норвежцы представили человекоподобного робота для дома и семьи — он мягкий и обтекаемый 13 ч.
Дженсен Хуанг снял с DeepSeek обвинения в обвале акций Nvidia — это инвесторы всё не так поняли 14 ч.