Опрос
|
реклама
Быстрый переход
Китайцы разработали флеш-память со «сверхсветовой скоростью» — она в 100 000 раз быстрее обычного кеша
18.04.2025 [10:39],
Геннадий Детинич
В журнале Nature вышла статья, в которой учёные из Университета Фудань сообщили о разработке самой быстрой в истории флеш-памяти. Прототип работает на скорости 400 пикосекунд как при записи, так и при чтении. Новая память получила поэтическое название «Рассвет» (Poxiao). Опытный экземпляр отличается скромной ёмкостью. Покорение объёмов начнётся на следующем этапе разработки. Разработкой нового типа памяти учёные из Китая занимаются с 2015 года. В 2021 году они предложили базовую теоретическую модель, а в 2024 году разработали сверхбыстрое устройство флеш-памяти с длиной канала 8 нм, что превысило физический предел размера флеш-памяти на основе кремния, составлявший около 15 нм. Но размеры — не главное. Главное — это невообразимая скорость работы новой энергонезависимой ячейки, которая оказалась в 100 000 раз выше скорости ячейки SRAM. Учёные отметили, что классическая память на основе управления транзисторным каналом электромагнитным полем имеет фундаментальные ограничения для наращивания скорости записи и чтения. Электроны нужно «разогнать», чтобы заставить их перейти в ячейку памяти или покинуть её. Традиционные полупроводниковые материалы и воздействие на электроны полем делают всё это медленным по современным меркам. По большому счёту, мало что изменилось после изобретения полевого транзистора около 60 лет назад. Для ускорения буквально нужна другая физика. Китайские учёные предложили использовать в качестве канала графен или условно двумерный полупроводник — диселенид вольфрама (WSe₂). Оба материала ведут себя схожим образом, хотя и имеют отличия. Распределение управляющего электромагнитного поля вдоль каналов таково, что электроны поступают в ячейку «сильно перегретыми» — с крайне высокой для них энергией. В общем случае графен считается так называемым дираковским материалом, в котором электроны подчиняются квантовым уравнениям Дирака. Использование графена позволяет ускорить перемещение «горячих» электронов и дырок в ячейку памяти, минимизируя потери энергии. Фактически, в созданных условиях электрон как бы становится безмассовой частицей, что позволяет резко увеличить скорости записи и чтения. Работу о субнаносекундной флеш-памяти с 2D-улучшенной инжекцией горячих носителей (Subnanosecond flash memory enabled by 2D-enhanced hot-carrier injection) можно найти по этой ссылке. Она свободно доступна для прочтения. В составе новой памяти тонкий 2D-канал оптимизирует распределение горизонтального электрического поля, повышая эффективность инжекции. Ток инжекции достигает 60,4 пА/мкм при напряжении 3,7 В. Новая память выдерживает более 5,5 млн циклов записи и стирания. Скорости записи и чтения одинаковы — по 0,4 нс для каждого режима. Объём прототипа составляет около 1 килобайта. В течение пяти лет команда обещает увеличить ёмкость до десятков мегабайт, получить лицензию и начать выпуск коммерческих экземпляров. NASA разработало первый космический квантовый датчик для создания самой точной карты гравитации Земли
16.04.2025 [11:00],
Геннадий Детинич
Учёные NASA в журнале EPJ Quantum Technology опубликовали статью, в которой сообщили о разработке первого космического квантового датчика для измерения силы тяжести вблизи Земли. Новый прибор сможет с высочайшей точностью создавать гравитационную карту планеты. Это поможет в навигации, в космических программах, а также позволит дистанционно определять залежи полезных ископаемых, включая нефть и питьевую воду. ![]() Пример гравитационной карты Земли (красным обозначены области повышенной гравитации, синим — пониженной). Источник изображения: NASA Квантовые датчики гравитации используют тот же принцип измерения силы тяжести, что и обычные датчики, только они будут на порядок чувствительнее. Для этого в квантовых датчиках в качестве тестовых масс, по ускорению падения которых определяется сила тяжести в конкретной точке пространства, используются атомы. В остальном всё происходит похожим образом. В зависимости от силы тяжести в каждой конкретной точке пространства тестовая масса будет падать с большим или меньшим ускорением. Тем самым далеко внизу на Земле и под её поверхностью, над которой пролетает спутник с датчиком, будет сосредоточено либо больше массы, либо меньше. В качестве тестовой массы квантовый датчик Quantum Gravity Gradiometer Pathfinder (QGGPf) использует сверхохлаждённые атомы рубидия. Охлажденные до температуры, близкой к абсолютному нулю, частицы в облаках атомов будут вести себя как волны. Квантовый гравитационный градиентометр измерит разницу в ускорении между волнами этой материи, чтобы обнаружить гравитационные аномалии. В процессе разработки датчика QGGPf и спутниковой системы для него NASA сотрудничает с рядом компаний и центров исследований. Так, технологию сенсорных головок команда JPL разрабатывает с компаниями AOSense и Infleqtion. Центр NASA им. Годдарда вместе с Vector Atomic трудится над усовершенствованием лазерной оптической системы. Квантовый датчик обещает оказаться достаточно компактным для размещения на борту одного сравнительно небольшого корабля. Его объём будет на уровне 0,25 м³, а масса составит около 125 кг. Традиционные гравитационные приборы космического базирования заметно больше и тяжелее. Первые полётные испытания элементов квантового гравитационного датчика запланированы на конец текущего десятилетия. Дата вывода в космос полноценного квантового научного прибора не установлена — ещё предстоит преодолеть достаточно много технических барьеров. Помимо составления гравитационной карты Земли квантовый датчик поможет изучать планеты Солнечной системы и внесёт свой вклад в фундаментальную физику. В своей области он станет самым совершенным и первым такого рода научным инструментом. TDK нашла способ на порядок ускорить передачу данных между чипами — оптика устранит самое узкое место ИИ-систем
15.04.2025 [18:51],
Сергей Сурабекянц
Японская компания TDK продемонстрировала «прорывную» оптическую технологию передачи данных с временем отклика в 20 пикосекунд. Представленный «спиновый фотодетектор», объединяющий оптические, электронные и магнитные элементы, заменит существующие способы передачи данных на основе полупроводников. По утверждению TDK, новая технология на порядок ускорит передачу информации, что устранит главное узкое место, сдерживающее рост генеративного ИИ. ![]() Источник изображения: unsplash.com В настоящее время обмен данными между чипами происходит при помощи электрических сигналов, но возросшие объёмы обрабатываемой ИИ информации требуют перехода к оптической технологии. «Именно передача данных является самым узким местом для ИИ, а не производительность полупроводникового графического процессора, — утверждает старший менеджер центра разработки продуктов следующего поколения TDK Хидэаки Фукудзава (Hideaki Fukuzawa). — Поскольку мы можем преодолеть многие из текущих узких мест, мы считаем, что эта технология станет переломным моментом для индустрии ИИ и центров обработки данных». Тестирование разработанной TDK оптической технологии передачи данных подтвердило её эффективность. По мнению профессора токийского университета Араты Цукамото (Arata Tsukamoto), «спиновый фотодетектор имеет замечательные перспективы как с научной, так и с технологической точки зрения». После дополнительных испытаний TDK планирует к концу марта 2026 года предоставить рабочие образцы технологии своим клиентам и начать массовое производство в течение следующих трёх-пяти лет. Несмотря на незрелость технологии и необходимость создания полноценной экосистемы совместно с разработчиками чипов, TDK уверена в преимуществах предлагаемого решения. Компания подчеркнула относительную дешевизну и высокую энергоэффективность своего спинового фотодетектора, а также широкий спектр применения, в том числе в гарнитурах дополненной и виртуальной реальности и высокоскоростных датчиках изображений. Новое устройство является частью рынка фотонных интегральных схем, который, по прогнозам технологической исследовательской группы IDTechEx, должен вырасти более чем в десять раз в течение следующего десятилетия до $54,5 млрд из-за потребностей генеративного ИИ. Потеря сопла не помешала ракете ULA Vulcan получить допуск к запускам военных спутников США
27.03.2025 [10:25],
Геннадий Детинич
Командование Космических сил США сертифицировало ракету Vulcan компании United Launch Alliance для выполнения космических миссий в целях национальной безопасности США. В 2024 году ракета совершила два испытательных запуска по программе сертификации. Один из них сопровождался аномалией в виде потери сопла боковым ускорителем. Несмотря на неисправность, ракета успешно доставила макет нагрузки на орбиту, что подтвердило её высокую надёжность. ![]() Источник изображения: United Launch Alliance В последние годы, до сертификации «Вулкана», контракты на запуск военных спутников получала только компания SpaceX. Это было связано с запретом на использование в таких миссиях ракетных двигателей российского производства. Компания ULA применяла российские РД-180 на ракетах Atlas V. В ракетах «Вулкан» используются двигатели BE-4, разработанные компанией Blue Origin. В запасе у United Launch Alliance ещё остаётся около дюжины российских двигателей, которые будут использованы для запусков Atlas V, но только в рамках гражданских миссий. В частности, в апреле ULA запустит «Атлас» со спутниками интернет-связи Project Kuiper компании Amazon. Первый запуск ракеты Vulcan по контракту с военными ULA планирует провести ориентировочно летом. Затем состоится ещё один запуск в целях национальной безопасности США. До конца года компания рассчитывает выполнить около 12 пусков, разделив их примерно поровну между ракетами Vulcan и Atlas V. К концу 2026 года ULA планирует выйти на темп двух запусков «Вулкана» в месяц и в дальнейшем поддерживать этот ритм. Что касается аномалии во время испытательного запуска, связанной с потерей части сопла ускорителя, причиной оказался производственный дефект. Твердотопливные ускорители для ракеты выпускает компания Northrop Grumman. По словам руководства ULA, партнёр провёл работу над ошибками и гарантировал, что подобные случаи больше не повторятся. С сертификацией Vulcan и разгонного блока Centaur американские военные получили новую «рабочую лошадку» и окончательно избавились от зависимости от российских ракетных двигателей. Учёные создали платформу из «говорящих атомов» — прототип аналогового акустического квантового компьютера
26.03.2025 [14:58],
Геннадий Детинич
Учёные из Федеральной политехнической школы Лозанны (EPFL) создали прототип аналогового акустического квантового компьютера, который намерены развить до полноценного вычислителя на совершенно иных принципах работы. Кубиты в предложенной системе смогут буквально разговаривать друг с другом, находясь в стабильной акустической суперпозиции. В квантовом мире измерение разрушает такие состояния, но звуковые волны нечувствительны к такому воздействию. ![]() Источник изображения: EPFL В своей работе исследователи использовали тот факт, что чистых звуковых волн, как правило, не бывает. В акустическом сигнале почти всегда присутствуют гармоники. Это можно сравнить с состоянием суперпозиции в квантовом мире — множеством вероятностей в одном акустическом сигнале. Это свойство можно использовать для создания акустических кубитов и, соответственно, аналогового акустического квантового компьютера, что учёные с успехом реализовали. «По сути, мы создали игровую площадку, вдохновлённую квантовой механикой, которую можно настраивать для изучения различных систем. Наш метаматериал состоит из легко настраиваемых активных элементов, что позволяет нам синтезировать явления, выходящие за рамки природы, — говорят исследователи. — Потенциальные области применения включают управление волнами и передачу энергии для телекоммуникаций, а однажды эта установка может помочь в извлечении энергии из волн». Предложенная учёными установка состоит из атомов-«кубиков». Каждый «кубик» снабжён динамиком и микрофоном. Микрофоны измеряют силу (амплитуду) сигнала и его частоту. В некотором роде это похоже на соединение атомов в кристаллической решётке, где колебания передаются от одного атома к другому. Прототип акустической квантовой системы далёк от настоящего квантового уровня. Акустические волны лишь приближённо имитируют квантовые явления, но эта имитация достаточно точна для экспериментов. В определённом смысле учёные воплотили в жизнь мысленный эксперимент Шрёдингера о живой и одновременно мёртвой кошке в закрытой коробке. Кошка тоже никак не отражала квантовый уровень, но давала представление об отсутствии привычной логики в применении к квантовым явлениям. Помимо возможности воспроизвести квантовую систему в макромасштабе предложенная установка может помочь в решении чисто утилитарной задачи. Люди часто страдают от шума в ушах, и природа этого явления нередко остаётся неизвестной. Акустический квантовый компьютер может стать симулятором подобных процессов, что поможет множеству пациентов с таким расстройством. Глава квантового подразделения Google пообещал настоящий прорыв в технологиях через пять лет
26.03.2025 [12:30],
Геннадий Детинич
Три месяца назад компания Google доказала возможность масштабирования квантовых систем без значительного увеличения числа квантовых ошибок. Это снимает барьеры для создания по-настоящему практичного квантового компьютера, который потребует от сотен тысяч до миллиона кубитов. Всё это укрепило уверенность руководителей квантового подразделения Google в том, что компания совершит действительный прорыв в квантовых технологиях уже до конца текущего десятилетия. ![]() Сундар Пичаи с одним из квантовых компьютеров Google в октябре 2019 года. Источник изображения: Reuters В интервью информагентству CNBC исполнительный директор подразделения Google Quantum AI Джулиан Келли (Julian Kelly) сказал: «Мы думаем, что осталось около пяти лет до настоящего прорыва — создания практического приложения, которое можно будет решить только на квантовом компьютере». Сегодня первые воплощения квантовых компьютеров решают синтетические задачи, которые также невозможно запустить на классических компьютерах. Но они не имеют практической ценности. Квантовые платформы пока ограничены в вычислительных ресурсах — в количестве кубитов для запуска сложных алгоритмов. Учёные и разработчики подобных систем и алгоритмов всё ещё учат их использовать и ищут сферу возможного приложения для квантовых вычислителей. Какой-либо определённости в этих вопросах нет, и нахождение ответов на такие, казалось бы, простые вопросы тоже может стать прорывом. Пока сотрудники Google Quantum AI и их коллеги сходятся на том, что квантовые системы способны на фундаментальном уровне имитировать физические явления и процессы. Поскольку на базовом уровне физика и химия — это суть проявлений квантовой механики, то квантовые симуляторы могут проложить путь к новым материалам и веществам, например, к новым составам аккумуляторов или лекарствам. Ещё одним применением для квантовых систем может стать генерация данных для обучения искусственного интеллекта, хотя в Google подчёркивают, что современные модели ИИ не подходят для запуска на квантовых платформах. «Одно из потенциальных применений, которое вы можете придумать для квантового компьютера, это генерация всё новых и новых данных», — сказал Келли. Заинтересованность в данных и в методах их новой обработки заинтересованы все лидеры отрасли вычислений. Некоторые, например, Microsoft, готовы даже подчинять себе физику — буквально. Таким действием стало заявление компании о создании квантового процессора на ещё не открытой частице — фермионе Майораны. Специалистов Microsoft не смутило её отсутствие и последующее возмущение физиков. В Microsoft готовы потрясать устои науки ради достижения поставленной цели. Отдельная история с генеральным директором Nvidia Дженсеном Хуангом (Jensen Huang). В январе 2025 года на CES 2025 он заявил, что квантовые компьютеры не появятся ещё как минимум 15 лет, чем обвалил акции квантовых компаний. Позже он извинился за эти слова, и заявил, что заинтересован в квантовых разработках. Ускорители Nvidia могут быть связующим звеном между квантовыми и классическими платформами, и главе «графической» компании не следовало сомневаться в новом направлении бизнеса. В любом случае ближайшие пять лет принесут много нового в мире квантовых вычислений. Будет ли это прорыв или просто быстрое продвижение вперёд — это уже не так важно. Главное то, что застоя на этом направлении не будет, а результат, в том или ином виде, обязательно появится. В Израиле разработали квантовый компьютер на миллион кубитов и скоро построят маленький прототип
13.03.2025 [18:05],
Геннадий Детинич
Израильский стартап QuamCore представил концепцию устойчивого к ошибкам и имеющего практическую ценность квантового компьютера с миллионом кубитов. Основная ценность разработки заключается в уникальной «сжатой» архитектуре криогенного вычислительного блока. Для достижения компактности и возможности дальнейшего масштабирования схемы управления квантовыми цепями удалось разместить ближе к кубитам, внутри криогенной камеры. ![]() Источник изображения: QuamCore Презентация состоялась после того, как QuamCore получила начальное финансирование в размере $9 млн от Viola Ventures при участии Earth & Beyond, которая инвестировала в компанию на ранних этапах, а также Surround Ventures, стратегических международных инвесторов и Израильского управления инноваций. «Мы основали компанию с одной-единственной целью – решить проблему масштабирования, которая мешает квантовым компьютерам быть практичными и полезными», — сказал генеральный директор и соучредитель QuamCore Алон Коэн (Alon Cohen) в интервью изданию Ynet. «Мы с самого начала поняли, что реальная ценность заключается в достижении миллиона кубитов. Мы нашли способ преодолеть основное препятствие, которое до сих пор мешало этому, — сказал он. — У нас есть подробный план создания квантового компьютера на миллион кубитов со встроенной коррекцией ошибок, что значительно приближает нас к практическим квантовым системам, способным решать реальные задачи». Использующие сверхпроводящую технологию квантовые процессоры должны работать при температуре, близкой к абсолютному нулю. Для этого они помещаются в системы криогенного охлаждения. Сотни золотых проводов, соединяющих чип, создают характерный для квантовых компьютеров вид «люстры». Подобный подход, считают в QuamCore, имеет предел масштабирования примерно на уровне 5000 кубитов. Для дальнейшего расширения платформы и увеличения числа кубитов таким способом потребуется масштабная криогенная инфраструктура, что неимоверно сложно и дорого. ![]() Классический квантовый компьютер на сверхпроводящих кубитах. Источник изображения: IBM Разработка QuamCore устранила давнее ограничение: необходимость размещать систему управления вне охлаждающей камеры, что делалось для предотвращения нагрева рабочего объёма с кубитами. В компании создали компактный вычислительный блок, легко поддающийся масштабированию, чем сразу решили множество будущих проблем, связанных с созданием кластерных структур. Коэн заявил, что этот прорыв снижает затраты на вычисления и энергопотребление в 1000 раз, сокращает время сборки систем до нескольких дней и позволяет объединять квантовые компьютеры в сеть для дальнейшего увеличения количества кубитов. У предложенной системы пока только один недостаток — она существует лишь на бумаге. Привлечение инвестиций даёт надежду вскоре увидеть прототип интересной квантовой вычислительной архитектуры. В компании QuamCore работает группа специалистов в области квантовой физики. Глава QuamCore ранее участвовал в основании компании Mobileye, занимавшейся созданием платформ визуализации, которую успешно продали Intel. Не исключено, что QuamCore с её невероятными перспективами по созданию компьютера с миллионом кубитов тоже со временем попадёт в хорошие руки. Великобритания заподозрила TikTok и Reddit в демонстрации подросткам того, что не следовало бы показывать
03.03.2025 [18:17],
Сергей Сурабекянц
Британский регулятор открывает расследование в отношении таких интернет-платформ, как видеосервис TikTok, форум Reddit и сайт обмена изображениями Imgur. Растущие опасения по поводу ненадлежащего использования этими социальными сетями персональных данных несовершеннолетних побудили Управление комиссара по информации (ICO) пристально исследовать, предоставляют ли их алгоритмы подросткам неподходящий или вредный контент. ![]() Источник изображений: unsplash.com Расследование изучит использование платформой TikTok персональной информации 13–17-летних подростков при предоставлении им рекомендаций по контенту. Регулятора также интересует, как Reddit и Imgur оценивают и проверяют возраст пользователя, чтобы оградить несовершеннолетних от опасного или вредного контента. ICO представила «Детский кодекс конфиденциальности в интернете» в 2021 году, который определяет меры по защите личной информации несовершеннолетних в интернете. Нынешнее расследование ICO будет направлено на выявление нарушений законодательства о защите данных. В случае обнаруженных нарушений регулятор сначала передаст информацию о них интернет-платформам и будет принимать окончательное решение лишь на основе их реакции. Комиссар по информации Джон Эдвардс (John Edwards) сообщил, что регулятор не сомневается в самом факте наличия элементов защиты информации на всех платформах, но хочет убедиться, что эти процедуры достаточно надёжны. «Вопрос в том, что они собирают, и в том, как они работают, — пояснил Эдвардс. — Я ожидаю, что в их рекомендательных системах будет много доброкачественных и позитивных способов использования данных детей. Меня беспокоит, достаточно ли они надёжны, чтобы не допустить, чтобы дети подвергались вреду, будь то вызывающие привыкание практики, или контент, который они видят». Эдвардс подчеркнул, что регулятор «не придирается к TikTok» и надеется глубоко изучить алгоритмы рекомендаций и больше узнать о «широком ландшафте» социальных сетей с помощью расследования. Выбор объектом расследования именно TikTok «был сделан на основе направления роста в отношении молодых пользователей, доминирования на рынке и потенциального вреда». К тому же в процессе расследования регулятор не может позволить себе слишком распылять усилия. Больше всего регулятора интересуют ключевые технологии цифровых платформ, которые используются в борьбе за посещаемость и просмотры. ![]() В начале года TikTok был заблокирован (с отсрочкой на 75 дней) в США из-за опасений, что китайское правительство может получить доступ к данным, собираемым приложением. Тогда же министр технологий Великобритании Питер Кайл заявил, что он «искренне обеспокоен их [TikTok] использованием данных, связанных с моделью собственности». В Google создали прорывные фотонные чипы для раздачи интернета лучами света по воздуху
01.03.2025 [21:34],
Геннадий Детинич
Подразделение X компании Alphabet (материнской компании Google) сообщило о разработке прорывного фотонного чипа для развёртывания интернет-сети по воздуху без проводов. Световые мосты устанавливаются на расстоянии 1 км друг от друга и обеспечивают скорость связи 10 Гбит/с. При удачном стечении обстоятельств это решение может вытеснить оптоволоконные каналы и даже спутниковый интернет Starlink. Будущее покажет. ![]() Источник изображения: Google Проект по созданию световых мостов носит название Taara, что на санскрите означает «звезда». Световой приёмопередатчик в рамках проекта Taara изначально был создан для проекта Google Loon — сети высотных дирижаблей, предназначенной для развёртывания интернет-сети в малонаселённых районах планеты. Однако проект Google Loon закрыли, а перспективные разработки нашли применение в новом проекте. Идея использования мостов Taara заключается в том, что они могут стать дешёвой альтернативой оптоволоконным каналам. «Оптоволоконная связь — это золотой стандарт высокоскоростного подключения, но она часто оказывается слишком дорогой, непрактичной или географически недоступной», — пояснил старший менеджер проекта Taara Махеш Кришнасвами (Mahesh Krishnaswamy). Это решение сможет помочь тем, кто не имеет возможности проложить оптоволоконную линию, а также жителям густонаселённых районов, где Starlink менее эффективен. Первое поколение мостов Taara имело размеры около 76 см и включало множество зеркал и приспособлений для калибровки. Эти «светофоры» могли передавать данные со скоростью 20 Гбит/с на расстоянии 20 км. Новое решение — это воплощение минимализма. Теперь приёмопередатчик Taara помещается на ногте — его размеры всего 13 мм. Скорость передачи снижена до 10 Гбит/с на расстоянии 1 км, но это компенсируется уменьшенными габаритами и значительно меньшей стоимостью таких мостов. Все системы калибровки теперь встроены в чип, который представляет собой практически готовое устройство, способное произвести революцию в сфере телекоммуникаций. «Наша команда представляет себе будущее, в котором подключение не будет ограничено кабелями или высокой стоимостью, — продолжает Кришнасвами. — Резко сокращая размеры и сложность наших систем, мы стремимся в конечном итоге значительно снизить стоимость подключения, создавая в отрасли сетевой эффект». К чести Taara, эта технология уже продемонстрировала свою эффективность в реальных условиях. «Световые мосты» Taara успешно применяются по всему миру: они обеспечивают связь на Карибских островах после обрыва кабелей, в городских центрах Индии, где пока нет поддержки 5G, и на множестве других объектов. Следующим шагом в развитии Taara станет работа над новым дизайном чипа. Компания планирует увеличить дальность действия и пропускную способность устройства, создав его версию с тысячами излучателей. Китай рассекретил единственный в мире геостационарный спутник дальнего зондирования Земли
27.02.2025 [16:12],
Геннадий Детинич
Ещё 13 августа 2023 года ракета «Чанчжэн-3B» с космодрома Сичан вывела в космос гражданский спутник радиолокационного наблюдения «Луди таньцэ-4» (Ludi Tance 4 01 или LT-4 01). Этот аппарат стал первым в мире геостационарным спутником дальнего зондирования Земли (ДЗЗ). Технология была предложена в США в 1978 году, но Китай стал первым, кто смог реализовать её на практике, что вывело Поднебесную на лидирующие позиции в радарных технологиях. ![]() Источник изображений: CGTN Снятие грифа секретности с миссии «Луди таньцэ-4» специалисты связывают с желанием Китая продемонстрировать превосходство над западными партнёрами в сфере высоких технологий и космоса. Публикация серии научных работ по проекту в журнале Space Science and Technology позволяет прояснить ряд особенностей работы радара на геостационарной орбите (ГСО). Он использует технологию синтезированной апертуры (SAR) и с высоты 36 000 км обеспечивает постоянное наблюдение за третью поверхности планеты. Радар круглосуточно мониторит Азиатско-Тихоокеанский регион, что вызывает обеспокоенность у сопредельных стран и США, хотя официально заявленная цель его работы — предупреждение землетрясений, а также помощь в сельском и лесном хозяйстве. ![]() Согласно прежним утечкам, LT-4 01 способен различать на Земле объекты размером от 20 метров. Для достижения такого разрешения с ГСО потребовалась разработка целого комплекса технологий и решений, включая «суммирование» нескольких лучей в космосе, что отдалённо напоминает технологию «Звезды смерти» из Звёздных войн. В отличие от спутников ДЗЗ на низкой орбите, которые обеспечивают более детальное изображение, LT-4 01 обладает значительно большим охватом поверхности, хотя обработка его данных занимает больше времени. Для точного наведения радара с геостационарной орбиты китайским учёным пришлось разработать уникальные механизмы стабилизации и алгоритмы обработки сигналов. Именно алгоритмы названы главной ценностью LT-4 01, поскольку они позволяют восстанавливать сильно искажённые и частично размытые изображения поверхности планеты. ![]() «Рассекречивая основные технологии, Китай демонстрирует миру своё превосходство в области радиоэлектронной борьбы, — заявил пожелавший остаться анонимным китайский исследователь. — Как и модели с открытым исходным кодом ИИ-компании DeepSeek, это заставит конкурентов играть в догонялки в тех областях, где Китай обладает структурными преимуществами». Учёные придумали, как упростить квантовые датчики — это сулит прорыв в радарах и атомных часах
06.02.2025 [16:18],
Геннадий Детинич
По мере развития квантовые технологии охватывают всё новые сферы, хотя ранее они были представлены в основном в криптографии и вычислениях. На очереди — квантовые датчики, которые позволят выполнять безопасные измерения на расстоянии без опасений перехвата или искажений. ![]() Источник изображения: Pixabay Безопасность при проведении дистанционных измерений важна для создания высокоточных квантовых радаров, систем космического базирования, мониторинга состояния пациентов в домашних условиях и других сфер, где критичны как точность измерений, так и их защищённость. Этой темой в последние годы активно занимаются учёные из британского Университета Сассекса (University of Sussex). Недавно в журнале Physical Review A вышла новая статья, в которой исследователи рассказали о возможных схемах реализации защищённых измерений с помощью упрощённых квантовых датчиков. В базовой конфигурации даже не требуется запутывать кубиты — всё реализуется гораздо проще, хотя эффект запутывания позволяет значительно повысить точность измерений. Основная идея технологии SQRS (безопасного квантового дистанционного зондирования) заключается в том, что в пункт проведения измерений отправляются одиночные фотоны. Они доставляются по открытым классическим каналам, например, через оптоволокно или лазерный луч, если речь идёт о передаче на спутник. В пункте назначения фотоны приобретают сдвиг фазы в соответствии с измеряемыми данными и затем возвращаются отправителю по тем же открытым каналам. В предложенной схеме получить результат может только отправитель, поскольку он владеет полной информацией о квантовых состояниях отправленных фотонов. Получатель в точке измерения не сможет определить величину сдвига фазы, так как у него нет опорных данных для вычислений. Злоумышленник, сумевший перехватить такие фотоны, также не сможет восстановить переданное сообщение, поскольку на этапе измерения (в момент сдвига фазы) вносится дополнительная квантовая неопределённость. Учёные из Китая смогли улучшить предложенную методику. Их статья, опубликованная на сайте arXiv, пока ещё не прошла рецензирование. Исследователи из Университета Гуанси (Guangxi University) показали, что для реализации SQRS вовсе не обязательно использовать одиночные фотоны, что требует достаточно сложного оборудования. В своей работе они доказали, что можно обойтись слабым источником фотонов. Используя законы статистики, такой источник можно считать однофотонным, корректируя показатели с помощью математических методов. Предложение китайских исследователей приближает практическую реализацию безопасного квантового дистанционного зондирования, что может ускорить развитие квантовых технологий. Япония закрыла лазейки для поставок чипов и квантовых технологий в КНР
02.02.2025 [07:10],
Анжелла Марина
На фоне давления со стороны США, Япония расширила список товаров, подлежащих экспортному контролю, включая передовые чипы и оборудование для квантовых компьютеров. Это делается для предотвращения их использования в военных целях и разработки оружия. ![]() Как поясняет Bloomberg со ссылкой на Министерство экономики Японии, передовые чипы могут применяться для повышения вычислительных возможностей высокоточного оружия, а квантовые компьютеры способны взламывать шифры. Теперь компаниям потребуется получать лицензии для экспорта этих товаров. Предположительно новые ограничения вступят в силу в конце мая. Отмечается, что этот шаг является частью более широких усилий США по закрытию «серых» способов по обходу ограничений на продажу чипов, используемых в технологиях искусственного интеллекта (ИИ), так как в Вашингтоне растёт обеспокоенность по поводу возможного реэкспорта полупроводников Nvidia в Китай. Токио со своей стороны также усиливает экспортный контроль, добавляя новые компании в свой чёрный список. Министерство экономики включило 42 организации по всему миру, которые будут подлежать экспортному надзору, касающегося товаров двойного назначения. В общей сложности в списке уже около 110 китайских компаний, исследовательских институтов и других организаций. Изменения вступают в силу 5 февраля. Китай выразил недовольство новыми ограничениями. В заявлении Министерства торговли Китая говорится, что «меры могут нарушить стабильность цепочек поставок и затруднить нормальные коммерческие отношения между предприятиями двух стран». Пекин надеется, что Япония не допустит негативного влияния на экономическое и торговое сотрудничество. Стоит сказать, что на фоне обострения ограничений Китай активизировал дипломатические контакты с союзниками США. В частности сообщается, что министр иностранных дел Китая Ван И (Wang Yi) неофициально пригласил премьер-министра Японии Сигэру Исибу (Shigeru Ishiba) посетить церемонию открытия Азиатских зимних игр в Харбине в начале февраля. Однако дипломатические источники считают, что визит маловероятен, так как японское правительство параллельно стремится организовать встречу Исибы с президентом США Дональдом Трампом (Donald Trump). Квантовая физика помогла создать сверхточный атомный термометр
01.02.2025 [23:22],
Геннадий Детинич
Учёные из Национального института стандартов и технологий США (NIST) сообщили о создании наиболее точного и не требующего калибровки атомного термометра, который может найти применение в науке, космосе и производстве. Работа прибора строится на принципах квантовой физики и поэтому безупречна. Современные научные термометры требуют длительной калибровки и даже в этом случае не гарантируют точных измерений, от чего свободен атомный термометр. ![]() Источник изображения: NIST В основе решения исследователей из NIST лежат так называемые ридберговские атомы. Таковыми часто делают атомы рубидия. Для этого необходимо крайний электрон так накачать энергией, что он на три порядка увеличивает расстояние от ядра. Для понимания масштаба представьте, что ядро атома размерами 1 мм. Тогда размер «накаченного» атома составил бы 30 м. Когда атом становится ридберговским, размеры атома увеличились бы до 1000 раз, что в нашем примере соответствовало бы 30 км. Электрон на таком удалении от ядра (в настоящем атоме) чувствителен к внешним проявлениям магнитных полей и энергий. А поскольку всё завязано на квантовую физику (свойства элементарных частиц), то все эти состояния и энергии рассчитываются с точностью до 12 знака после запятой. Тем самым измерения с привлечением ридберговских атомов будут невероятно точными даже по умолчанию, просто опираясь на фундаментальные свойства Вселенной (с привлечением необходимого оборудования и вычислительных алгоритмов). Впрочем, эта простота, конечно же, кажущаяся. Однако оборудование для организации подобного термометра стало достаточно компактным и вполне может быть использовано на производстве. В атомном термометре атомы рубидия охлаждают до температуры, близкой к абсолютному нулю (до 0,5 мК). Это снижает собственные колебания атомов (их энергию) до минимально уровня. Облако атомов рубидия при этом удерживается в пространстве электромагнитным полем, не давая ему контактировать со стенками камеры. После этого облако облучают лазерами, и самые дальние электроны поглощают энергию, после чего они переходят на орбиты с 1000-кратным превышением стандартных орбит. После этого остаётся следить за поведением удалённых электронов, которые поглощают или отдают энергию из окружающего пространства. Эта энергия эквивалентна температуре измеряемого объекта и переносится излучаемыми им фотонами. Получая и отдавая энергию, электроны меняют орбиты и по этим изменениям можно с чрезвычайной точностью рассчитать температуру объекта. Измерения производятся бесконтактным способом, что во многих случаях весьма удобно. Этот прорыв не только открывает путь для нового класса термометров, но и особенно важен для атомных часов, поскольку их точность может пострадать от случайного нагрева. «Атомные часы исключительно чувствительны к изменениям температуры, что может привести к небольшим погрешностям в их измерениях», — пояснили учёные. — Мы надеемся, что эта новая технология поможет сделать наши атомные часы ещё более точными». Всё это приведёт к новым возможностям в науке, в квантовых вычислениях, улучшит автономную навигацию в дальнем космосе (в первую очередь) и пригодится во многих других областях. У производителей памяти не вышло создать 3D DRAM по аналогии с 3D NAND, но скоро это изменится
02.01.2025 [18:28],
Павел Котов
Отрасль компонентов памяти отличается консервативным подходом: революционным изменениям производители предпочитают постепенные улучшения. Но к концу десятилетия миру может быть представлена монолитная 3D DRAM, правда, пока нет ясности, какую форму примет это решение, и когда такая память будет готова к массовому производству. ![]() Источник изображения: samsung.com В области флеш-памяти производителям удалось добиться значительных успехов — ёмкость компонентов повышается за счёт монолитной 3D-архитектуры. Но в области DRAM использовать это решение не получается, потому что существует потребность в достаточно крупных элементах для хранения заряда — как правило, это конденсаторы. Самый простой подход к увеличению объёма данных на однослойном чипе DRAM — уменьшение размера ячейки. Из-за вертикальных конденсаторов слои DRAM оказываются слишком толстыми, что затрудняет их размещение друг на друге. Чтобы решить эту проблему, одни производители пытаются размещать конденсаторы горизонтально, другие — вообще их исключить. 3D DRAM может иметь различные реализации. Одна из них уже используется в производстве — это память с высокой пропускной способностью (HBM), но в данном случае речь идёт о многослойном кристалле, а не монолитном, как в случае 3D NAND. Появление монолитного чипа 3D DRAM придаст импульс развитию направления HBM и окажет влияние на всю отрасль. Оптимизировать ячейки DRAM можно, уменьшив размеры элементов с помощью передовых методов литографии, например, создавать заготовки в два или четыре прохода. Samsung разрабатывает новую архитектуру ячеек 4F2, более компактную, чем актуальная 6F2, но для её создания потребуются новые материалы, в том числе сегнетоэлектрики. Ещё одним перспективным направлением представляется укладка конденсатора на бок, что поможет снизить толщину слоёв, чтобы располагать эти слои вертикально. Производитель оборудования для выпуска чипов Lam Research предложил несколько способов достичь этой цели: перевернуть ячейку, сдвинуть линию битов и применять транзисторы с окружающим затвором (GAA). Рассматриваются конструкции DRAM вообще без конденсаторов; предлагается технология Floating Body DRAM (FB-DRAM) по аналогии флеш-памяти с плавающим затвором. Компания Neo Semiconductor предложила коммерческую технологию на основе ячейки Floating Body с двойным затвором. Моделирование показало, что «этот механизм способен повысить запас чувствительности и сохранение данных», заявил гендиректор компании Энди Сю (Andy Hsu). Таким образом, появление монолитной 3D DRAM действительно может быть не за горами, но производителям потребуются ещё несколько лет, прежде чем на поддержку одного из решений будут выделены средства. Пара виноградин вдвое усилила магнитное поле, и открыла путь к лучшим квантовым датчикам
28.12.2024 [19:10],
Геннадий Детинич
В интернете полно видеороликов с виноградинами, буквально зажигающими в микроволновой печи. Разрезанная на две половинки ягода при включении микроволновки начинает искрить и вскоре ярко вспыхивает, демонстрируя опасные на первый взгляд эффекты. Казалось бы — сплошное развлечение, однако вдумчивый эксперимент показал, что за явлением стоит интересная физика, способная дать толчок в развитии квантовых детекторов. ![]() Источник изображения: Fawaz, Nair, Volz Впервые любительские эксперименты с поджиганием виноградин начались в 1994 году. Все они были одинаковы — виноградина разрезалась на две половинки так, чтобы они оставались соединены тонкой кожицей. Позже выяснилось, что это не обязательно. Достаточно, чтобы половинки или целые виноградины оставались рядом. Более того, аналогичный эффект в микроволновке проявляли крыжовник, большие ягоды ежевики и гидрогелевые шарики. Во всех случаях физика была примерно одинаковая. Плотность винограда, например, оказывалась оптимальной, чтобы происходил разрыв клеток с последующей ионизацией молекул и их разрывами. Клеточная жидкость сама по себе электролит — содержит ионы, к которым добавлялись ионы, образующиеся под действием микроволнового излучения. Виноградины начинали испускать плазму, которая в потоке излучения воспламенялась. В ходе очередного эксперимента в 2019 году выяснилось, что виноградины не обязательно должны быть соединены физически. Эффект проявляется, если они находятся рядом. В новой работе учёные поставили более тонкий эксперимент — они измеряли силу электромагнитного поля вблизи виноградин и без них. Для этого был изготовлен искусственный наноалмаз с азотными дефектами в кристаллической решётке. Дефекты реагировали на свет зелёного лазера, и по интенсивности их свечения можно было определить интенсивность микроволнового поля вблизи этого датчика. Наноалмаз поместили на волновод, по которому передавался импульс зелёного лазера. Над наноалмазом разместили пару виноградин. Измерения показали, что в присутствии виноградин поле демонстрировало в два раза большую силу, чем без них. Это объясняется тем, что в случае оптимального размера ягод (около 27 мм в длину), пара создаёт «горячую точку» между одной и другой ягодой, усиливая приложенное излучение и повышая вблизи точки силу поля. На обнаруженном эффекте можно создать целый спектр высокочувствительных датчиков для космоса, работающих в микроволновом диапазоне, включая поиск гипотетических частиц тёмной материи. Также открытие поможет продвинуться в квантовых вычислениях, где микроволновые излучения и поля играют ключевую роль. Но прежде необходимо сузить рамки эксперимента для выяснения более точных параметров элементов будущих датчиков. Поставленный эксперимент был достаточно грубым и не очерчивает границ возможного. |