Сегодня 22 января 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Процессоры и память

Разгон неоверклокерских Skylake: Core i5-6400 и i3-6100 против i5-6600K

⇣ Содержание

Те пользователи, знакомство которых с миром персональных компьютеров началось ещё в прошлом веке, наверняка помнят легендарные процессоры Celeron 300A. Ведь оверклокинг как массовое явление начинался именно с них. И тому были веские причины: они без особого труда разгонялись по частоте как минимум в полтора раза, и в результате такой процессор со стоимостью около $150 достигал по производительности уровня старшего 700-долларового Pentium II 450. Именно это и заложило идеологическую базу оверклокинга: «Плати меньше – получай больше».

Однако золотые дни разгона процессоров, подпитываемого желанием сэкономить, остались далеко в прошлом. Теперь разгон стал хобби для богатых, и те пользователи, которые хотят приобщиться к армии оверклокеров, вынуждены, наоборот, платить больше: на все оверклокерские процессоры накладывается дополнительная наценка. Последним же относительно недорогим процессором, который можно было разгонять до уровня старших представителей в линейке, стал выпущенный в 2009 году Core i5-750 поколения Lynnfield. Его при определённом везении вполне можно было раскочегарить до производительности, выдаваемой процессорами класса Core i7. И кстати, выпускаемые в то же время процессоры Core i3 поколения Clarkdale тоже вполне допускали разгон.

Но в 2011 году выход платформы LGA1155 и очередного поколения процессоров Core положил конец всему этому богатству возможностей, доступному даже в бюджетных платформах. Обычные процессоры поколения Sandy Bridge разгоняться перестали совсем, а оверклокерам на выбор были предложены лишь две модели: Core i5-2500K и Core i7-2600K, которые Intel решила продавать несколько дороже обычных и аналогичных по характеристикам собратьев. В результате входной билет в оверклокерский клуб стал стоить $216 – именно в такую сумму был оценён разгоняемый Core i5. Впрочем, энтузиастов это не сломило, и продажи таких дорогих процессоров оказались весьма приличными. Ведь заплатить явно было за что. Рабочую частоту Core i5-2500K и Core i7-2600K можно было поднять до уровня в 4,8-5,0 ГГц, при том что их номинальные частоты составляли 3,3-3,4 ГГц. Поэтому, немного повозмущавшись для приличия, пользователи всё же приняли новую оверклокерскую парадигму, даже несмотря на то, что ни одна из моделей CPU дешевле $200 больше не могла быть разогнана.

Однако в последнее время отношение Intel к разгону стало снова меняться. На волне падения интереса к традиционным ПК именно энтузиасты оказались наиболее преданными покупателями продукции микропроцессорного гиганта. Видимо, это растопило лёд в сердце Intel, и оверклокерам стали оказывать разнообразные знаки внимания. Одним из самых явных таких знаков стало появление Pentium G3258 Anniversary Edition – бюджетного 72-долларового процессора, предназначенного именно для разгона. Но хотя этот процессор стал весьма популярной игрушкой в руках экономных оверклокеров, полноценным оверклокерским предложением его назвать тяжело. Предложения серии Pentium имеют всего два ядра и не поддерживают технологию Hyper-Threading, что нельзя компенсировать никаким увеличением тактовой частоты. Поэтому для серьёзных систем Pentium G3258 попросту не годится.

С выходом новейших процессоров Skylake многие энтузиасты связывали надежды на ещё большие послабления в части ограничения разгонных возможностей процессоров Intel. Дело в том, что в числе свойств новой платформы LGA1151 значилась возможность беспрепятственного изменения частоты базового тактового генератора. И это обещало возвращение разгона любых процессоров – начиная с самых младших Pentium, и заканчивая процессорами Core i5 и i7 без литеры K в названии. Однако поначалу реальность оказалась несколько иной: в неоверклокерских процессорах Intel реализовала блокировку смены тактовой частоты – эта функция получила собственное название BCLK Governor.

Но по прошествии нескольких месяцев после анонса Skylake стало понятно, что работает такая блокировка исключительно на программном уровне и её, соответственно, не сложно обойти. В течение последних недель производители материнских плат смогли детально разобраться с функционированием защиты, и сегодня со всей определённостью можно сказать о том, что разгон моделей Skylake, не относящихся к числу оверклокерских, – это реальность. И кстати, судя по отсутствию какого-либо противодействия со стороны Intel, такая победа над BCLK Governor на самом деле не расстраивает производителя процессоров и происходит с его молчаливого согласия (а может быть, даже и с некоторым содействием).

Впрочем, не будем углубляться в конспирологию, у этого материала совсем иная цель. Открывшиеся возможности по разгону любых Skylake непременно должны быть проверены. Поэтому мы решили протестировать, как протекает и каких результатов позволяет достичь разгон наиболее интересных и правильных с точки зрения изначальной оверклокерской парадигмы объектов – младшего четырёхъядерника серии Core i5 и младшего двухъядерного процессора серии Core i3.

#Разгон заблокированных Skylake: как это работает

Итак, с точки зрения разгона модельный ряд процессоров Skylake совершенно не отличается по своей структуре от предыдущих поколений. Intel представила множество двухъядерных и четырёхъядерных процессоров Core i3, i5 и i7 шестого поколения, но разгонять разрешено лишь две специальные модели – Core i5-6600K и Core i7-6700K. Эти процессоры стоят чуть дороже аналогичных моделей без буквы K в названии, но зато имеют разблокированные множители, и на платах с набором микросхем Intel Z170 их результирующая частота легко меняется в настройках UEFI BIOS. Остальным же представителям семейства Skylake такая возможность недоступна, и это ограничение — аппаратное.

Однако тактовая частота, на которой работает процессор, на самом деле является произведением двух параметров – множителя и базовой частоты. И в то время как в обычных, не предназначенных для разгона процессорах множитель жёстко блокируется, для разгона всё равно остаётся альтернативный путь – через увеличение базовой частоты (BCLK) выше стандартного значения 100 МГц. Проблема лишь в том, что в последних интеловских платформах для Sandy Bridge, Ivy Bridge и Haswell частота BCLK была жёстко связана не только с частотой процессора, но и с другими частотами в системе, например с частотой работы шин DMI и PCI Express. А эти шины, к сожалению, очень капризны и работают на повышенной частоте крайне неохотно. Увеличение их частоты более чем на 3-5 процентов неминуемо приводит к искажению передаваемых данных. Поэтому на платах под процессоры в LGA1150- и LGA1155-исполнении изменять BCLK совершенно бесполезно – рост базовой частоты выше номинального значения вызывает нестабильность или полную неработоспособность системы в целом.

Но с выходом процессоров Skylake компания Intel решила внести некоторые изменения в привычную схему формирования частот. В новой платформе шина PCI Express и набор системной логики выделены в отдельный домен, частота которого остаётся фиксированной вне зависимости от того, как изменяется BCLK.

На базовую частоту BCLK остались жёстко завязаны лишь внутрипроцессорные компоненты: вычислительные ядра, кеш, интегрированное графическое ядро, контроллер памяти и прочие Uncore-блоки, которые синхронизируются исключительно между собой, а потому относятся к разгону снисходительно. Таким образом, в теории всё выглядит так, как будто к разгону через изменение базовой частоты пригодны абсолютно любые процессоры Skylake.

И оверклокерские Skylake, действительно, превосходно разгоняются не только через повышение множителя, но и путём увеличения частоты BCLK. Но несмотря на это, первые попытки по изменению частоты Skylake, не относящихся к K-серии, никаких плодов не приносили. Дело в том, что в таких процессорах Intel встроила защиту от увеличения базовой частоты – упомянутый нами выше механизм BCLK Governor, который не давал поднимать BCLK свыше 103-104 МГц. К счастью, как мы уже сказали ранее, защита эта имеет не аппаратный характер и может быть обойдена на программном уровне. Для того чтобы научиться преодолевать её, производителям материнских плат пришлось потратить несколько месяцев. Но результат достигнут – на сегодня алгоритм отключения BCLK Governor средствами BIOS материнской платы найден.

Прорыв на данном направлении совершила Supermicro – именно на её плате C7H170-M была продемонстрирована принципиальная возможность работы неоверклокерских процессоров Skylake с сильно повышенной частотой BCLK. А вслед за Supermicro быстро реализовали подобную функциональность и другие фирмы. На сегодняшний день практически все флагманские материнки ASUS, ASRock, Biostar, Gigabyte, EVGA и MSI на базе набора логики Intel Z170 получили специальные версии BIOS, в которых добавлена возможность полноценного управления частотой BCLK для всего модельного ряда Skylake-процессоров. И более того, как утверждают инженеры, подобная же функциональность с некоторыми ограничениями может быть перенесена и на платы с более простыми наборами логики, так что, вполне вероятно, разгон через увеличение базовой частоты в скором времени станет доступен и в совсем недорогих платформах.

Впрочем, не всё так просто. Реализация обхода интеловской защиты требует некоторых ухищрений, в результате которых разогнанные через увеличение BCLK неоверклокерские процессоры приобретают некоторые изъяны:

  • Разогнанный процессор полностью теряет контроль над коэффициентом умножения. Это значит, что при разгоне «по шине» придётся забыть о технологиях Turbo Boost, Intel Enhanced SpeedStep и об энергосберегающих состояниях C-states. CPU всегда будет работать на предельной частоте и при постоянном напряжении питания.
  • Пропадает возможность снятия показаний температур со встроенных в вычислительные ядра термодатчиков. Большинство средств мониторинга попросту не может отображать температуру процессорных ядер.
  • Неработоспособным оказывается встроенное графическое ядро. Выражается это в том, что драйвер Intel HD Graphics при попытке запуска на разогнанном процессоре тут же завершает свою работу с ошибкой.
  • Существенно снижается скорость выполнения AVX/AVX2-инструкций.

В принципе, приведённый список выглядит не слишком устрашающим. Энергосберегающие режимы оверклокеров интересуют слабо, тем более что в простое процессор потребляет не слишком много и без какого-либо снижения частоты и напряжения питания. Контроль за тепловым режимом CPU проводить с помощью датчиков температуры ядер совсем необязательно: например, встроенный датчик температуры упаковки процессора (CPU Package) продолжает исправно возвращать корректные показания и при разгоне через увеличение частоты BCLK. Ну а встроенная графика вообще многими считается в современных CPU не более чем балластом.

Опасение вызывает лишь замедление работы AVX/AVX2-инструкций. Производительность алгоритмов, активно использующих векторные инструкции, может падать многократно. Но на самом деле смириться можно и с этим: игровые приложения, скорость в которых интересует большинство оверклокеров в первую очередь, AVX-команды практически не задействует.

Поскольку оверклокингу через увеличение частоты BCLK теперь можно подвергать абсолютно любые процессоры поколения Skylake, наибольший практический интерес представляет разгон младших моделей в каждом семействе. Именно в этом случае принцип «плати меньше – получай больше» может дать максимальный эффект. Приняв во внимание тот модельный ряд Skylake, который представлен Intel к настоящему моменту, мы сформировали следующий перечень LGA1151-процессоров, наиболее подходящих для разгона:

ПроцессорЯдра/ потокиL3-кешШтатный множительЦенаBCLK для 4,6-4,8 ГГц

Core i7-6700

4/8

8 Мбайт

34x

$303

135-141 МГц

Core i5-6400

4/4

6 Мбайт

27x

$182

170-178 МГц

Core i3-6300

2/4

4 Мбайт

38x

$138

121-126 МГц

Core i3-6100

2/4

3 Мбайт

37x

$117

124-130 МГц

Pentium G4400

2/2

3 Мбайт

33x

$64

139-145 МГц

Все процессоры из этого списка мы проверять не стали, а выбрали лишь пару самых-самых интересных: Core i5-6400 и Core i3-6100. Именно с ними и проводились все практические эксперименты.

#Разгон BCLK: что на практике

В реальности работает всё очень просто. Единственное, что нужно для разгона неоверклокерского Skylake, – это правильная материнская плата, для которой существует адаптированная версия BIOS. На сегодня список подходящих плат уже очень велик, однако нужно иметь в виду, что далеко не все производители выкладывают версии BIOS с поддержкой разгона обычных Skylake-процессоров на свои сайты. Некоторые из них, побаиваясь карающей длани Intel, распространяют необходимые для разгона прошивки по-партизански – через независимые оверклокерские форумы. Поэтому перед тем, как перейти непосредственно к разгону, какое-то время придётся потратить на поиск нужной версии BIOS.

Например, та плата, что используется для тестов процессоров в нашей лаборатории, – ASUS Maximus VIII Ranger, получила уже даже две версии BIOS, подходящие для разгона Skylake с заблокированными множителями. Но искать их нужно не на сайте ASUS, а в специальной теме на оверклокерском портале HWBOT, хотя они и сделаны программистами компании, а не энтузиастами. Стоит отметить, что обе эти версии представляют собой ответвление от основной линии развития BIOS и предназначены исключительно для экспериментов по разгону не-K-процессоров. Более того, файл описания к этим специальным прошивкам содержит предупреждение о том, что для разгона Core i5-6600K или Core i7-6700K они не подходят и могут даже вызвать повреждение таких процессоров.

Интерфейс специальных прошивок совершенно не отличается от привычной среды UEFI BIOS: никаких дополнительных опций он не добавляет и лишь позволяет беспрепятственно менять частоту BCLK. Единственное отличие в процедуре разгона заключается в том, что для нормальной загрузки операционной системы в настройках UEFI BIOS в разделе Advanced\CPU Configuration потребуется установить опцию Boot Performance Mode в значение Turbo Performance, а также отключить CPU C-states и технологию Intel SpeedStep. В остальном же всё работает ровно так же, как и при разгоне разблокированных процессоров.

Правда, нужно сделать ещё одно важное предварительное замечание, касающееся проверки стабильности работы разогнанной системы. Дело в том, что общепринятые утилиты, которыми обычно проверяется стабильность, такие как OCCT, LinX или Prime95, активно используют ресурсоёмкие AVX/AVX2-инструкции, выполнение которых у разогнанных процессоров с заблокированным множителем сильно замедлено. Поэтому для неоверклокерских процессоров эти утилиты создать значительную нагрузку оказываются неспособны, и для проверки температурного режима и устойчивости работы в целом они уже не подходят. Вместо этого пользоваться лучше программами, которые могут «озадачить» ядра процессоров интенсивными целочисленными вычислениями, среди которых можно порекомендовать различные пакеты для финального рендеринга. Впрочем, даже такие программы греют Skylake не слишком сильно, поэтому в конечном итоге предельные температуры разогнанных не-К-процессоров оказываются заметно ниже, чем у их полноценных оверклокерских собратьев. Поэтому для неоверклокерских процессоров можно обойтись даже менее мощными системами охлаждения, чем принято использовать в платформах, где трудятся разогнанные Core i5-6600K или i7-6700K.

Теперь о полученных результатах. Мы не ставили своей целью достижение каких бы то ни было рекордов. Задача проведённого тестирования – выявить тот разгонный потенциал не-К-процессоров семейства Skylake, который можно раскрыть в массовых системах. Поэтому для отвода тепла от тестовых CPU мы пользовались обычным воздушным кулером башенного типа Noctua NH-U14S, а процессорное напряжение не повышали до потенциально опасных величин. Иными словами, такой разгон, о котором пойдёт речь далее, – это вполне приемлемые для постоянной эксплуатации режимы работы.

Первым мы попробовали разогнать четырёхъядерный Core i5-6400. Это – процессор с крайне низким штатным множителем 27x, поэтому при его разгоне частоту BCLK необходимо повышать довольно сильно. Однако никаких проблем с этим нет: при увеличении напряжения питания до 1,425 В и включении опции CPU Load-line Calibration наш экземпляр Core i5-6400 легко покорил отметку 4,7 ГГц.

Настройки UEFI BIOS для разгона Core i5-6400

Стабильность в таком состоянии была подтверждена полным прохождением всего набора тестовых приложений, температура же CPU под нагрузкой не выходила за 80-градусные пределы. Иными словами, разгон удался на славу: тактовая частота процессора была повышена на 75 процентов выше номинала, и по достигнутой частоте Core i5-6400 оказался совсем не хуже, чем чистокровный оверклокерский Core i5-6600K. То есть, на первый взгляд, Core i5-6400 позволяет сэкономить порядка $60 – именно такова разница в цене этих четырёхъядерников.

Но не стоит забывать и про подводные камни. Показания температурных датчиков у разогнанного Core i5-6400 оказались недоступны. Утилиты для мониторинга о температуре процессорных ядер действительно не отображают никаких корректных данных.

Как и было обещано, катастрофически упала и скорость работы алгоритмов, задействующих AVX/AVX2-инструкции. Для примера мы запустили три простых теста FPU из утилиты Aida64, и, как можно убедиться по приведённым снимкам экрана, производительность разогнанного Core i5-6400 оказалась в несколько раз хуже, чем должна была быть.

Чтобы лучше оценить масштаб бедствия, в следующей таблице мы приводим показатели этих бенчмарков для Core i5-6400 в номинальном режиме и при его разгоне до 4,7 ГГц.

Core i5-6400, номиналCore i5-6400, разгон до 4,7 ГГцПадение производительности из-за разгона
FPU VP8

5184

4007

23 %

FPU Julia

25603

8666

66 %

FPU Mandel

14175

4798

66 %

Частота растёт, а производительность снижается в несколько раз. Такова расплата за разгон той модели процессора, которая изначально для разгона не предназначена. Остаётся лишь утешать себя тем, что программы, активно работающие с AVX/AVX2-инструкциями, среди привычных для большинства пользователей приложений встречаются не слишком часто.

Второй выбранный нами для тестов процессор, Core i3-6100, – это младший двухъядерник с технологией Hyper-Threading, изначально рассчитанный на работу при частоте 3,7 ГГц. Но с помощью увеличения частоты BCLK разогнать оказалось очень легко и его. Предельная частота, при которой наш экземпляр смог нормально работать, составила те же типичные для Skylake 4,7 ГГц. Функционирование в таком режиме потребовало установки частоты BCLK в 127 МГц, а стабильность была достигнута при увеличении напряжения питания CPU до 1,425 В.

Настройки UEFI BIOS для разгона Core i3-6100

Никаких проблем с устойчивой работой системы при таком разгоне не наблюдалось, процессор же разогревался не более чем до 75 градусов. Таким образом, частоту выбранного нами для тестов экземпляра Core i3-6100 удалось увеличить на 27 процентов. Это – заметно меньше того прироста, который удалось выжать из Core i5-6400, но всё равно неплохо. Тем более до сегодняшнего дня увидеть современный Core i3 в разгоне нам ещё не удавалось ни разу.

К сказанному остаётся добавить лишь две вещи. Во-первых, у не-К-процессоров частота работы Uncore-блоков жёстко связана с частотой вычислительных ядер. Изменение в настройках BIOS множителя, отвечающего за частоту Uncore, на неоверклокерские процессоры никак не влияет – это функция работает лишь для Core i5-6600K и Core i7-6700K. Поэтому при разгоне не-K процессоров через увеличение частоты BCLK одновременно с вычислительными ядрами разгоняется и L3-кеш. К счастью, в этом нет никакой проблемы. Как показали наши эксперименты с Core i5-6400 и i3-6100, Uncore-узлы Skylake вполне нормально функционируют на повышенных частотах вместе с вычислительными ядрами и не создают при разгоне до 4,7 ГГц никаких дополнительных препятствий.

Во-вторых, неприятных сюрпризов не следует ждать и со стороны контроллера памяти. Применяемые нами в тестовой системе модули Corsair Vengeance LPX CMK16GX4M2B3200C16R рассчитаны на режим DDR4-3200, и они смогли нормально работать в нём, в том числе и при увеличенной частоте BCLK, с обоими протестированными CPU. Естественно, рост частоты базового тактового генератора требует попутного увеличения делителей, формирующих частоту памяти, и про это не нужно забывать во время разгона. Но никаких проблем при работе со скоростной DDR4-памятью у разогнанных не-К-процессоров обнаружено не было.

Следующая страница →
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
Хардкорный режим, скачки и три сюжетных дополнения: Warhorse рассказала, как будет поддерживать Kingdom Come: Deliverance 2 после релиза 5 ч.
HPE проводит расследование в связи с заявлением хакеров о взломе её систем 5 ч.
«Мы создали CRPG нашей мечты»: продажи Warhammer 40,000: Rogue Trader превысили миллион копий 6 ч.
Создатели Lineage и Guild Wars отменили MMORPG во вселенной Horizon Zero Dawn и Horizon Forbidden West 6 ч.
Instagram начал переманивать блогеров из TikTok денежными бонусами до $50 тысяч в месяц 7 ч.
Eternal Strands, Starbound, Far Cry New Dawn и ещё шесть игр: Microsoft рассказала о ближайших новинках Game Pass 8 ч.
ИИ превзойдёт человеческий разум в течение двух-трёх лет, уверен глава Anthropic 8 ч.
Keep Driving вышла на финишную прямую — новый трейлер и дата релиза ностальгической RPG о путешествии по стране на своей первой машине 9 ч.
Google стала на шаг ближе к ИИ, который думает как человек — представлена архитектура Titans 11 ч.
У «Ростелекома» произошла утечка данных — клиентам рекомендовано сменить пароли 11 ч.
GeForce RTX 5000 Kingpin не будет — легендарный оверклокер рассказал о планах на будущее, в которых есть место не только Nvidia 2 ч.
Слухи: OpenAI, Oracle и Softbank вложат $100 млрд в ИИ-инфраструктуру США, а в перспективе — до $500 млрд 3 ч.
Новая статья: Обзор смартфона OPPO Find X8: очень удобный флагман 3 ч.
К мемкоинам приведут настоящих инвесторов — поданы заявки на крипто-ETF в Dogecoin и TRUMP 4 ч.
Европа установила рекорд по отрицательным и нулевым ценам на электричество в 2024 году 4 ч.
Fujifilm представила гибридную камеру мгновенной печати Instax Wide Evo с широкоугольным объективом 8 ч.
Новый Apple iPhone SE получит вырез Dynamic Island вместо чёлки 9 ч.
К 2035 году США смогут получать до 84 ГВт из источников возобновляемой энергии на федеральных землях 10 ч.
Maxsun выпустила новые видеокарты на чипах Nvidia Kepler десятилетней давности 10 ч.
«Транснефть» направила повторный иск к Cisco на 56 млн рублей 10 ч.