⇣ Содержание
Опрос
|
реклама
Ryzen 5000 (Zen 3) против Rocket Lake (Cypress Cove): что показал тест IPC
Вопрос, ответу на который посвящена эта статья, носит скорее теоретический, чем прикладной характер. Тем не менее он нередко всплывает в различных сетевых спорах, а потому определённо нуждается в специальном разборе. Речь идёт о IPC (instructions per cycle) – характеристике удельной производительности, описывающей быстродействие той или иной микроархитектуры в отрыве от тактовой частоты. AMD и Intel, выводя на рынок последние поколения десктопных процессоров, сделали особый акцент на том, что им удалось заметно улучшить эффективность используемых микроархитектур и увеличить удельную производительность используемых ядер в пересчёте на гигагерц. Так, для семейства процессоров Ryzen 5000, основанных на архитектуре Zen 3, компания AMD заявила о росте IPC по сравнению с прошлым поколением на 19 %. Это – немного оптимистичная оценка, но в собственном тестировании мы смогли подтвердить, что существенный прирост действительно имеет место. Только по нашим данным удельная производительность Zen 3 по сравнению с Zen 2 выросла на 11 % в ресурсоёмких приложениях и на 16 % в играх. Не отстаёт от AMD и Intel. В недавно выпущенных процессорах Core 11-го поколения, основанных на дизайне Rocket Lake, почти такой же, как в Zen 3, прирост показателя IPC — на уровне 19 %. Мы не проверяли это утверждение собственными тестами напрямую, но, поскольку в основе Rocket Lake лежит микроархитектура Cypress Cove, которая представляет собой 14-нм порт мобильной микроархитектуры Sunny Cove, декларируемая величина вряд ли далека от истины. Процессоры Ice Lake, где используются ядра Sunny Cove, действительно заметно быстрее предшественников на микроархитектуре Skylake, несмотря на довольно близкие тактовые частоты. Таким образом, и Zen 3, и Rocket Lake принесли с собой заметный прогресс не только по видимым в спецификациях численным характеристикам процессоров, но и по росту удельной производительности. Однако такие перемены вызывают дополнительные вопросы. Если предложения AMD и Intel стали заметно лучше по сравнению со своими предшественниками, то как они теперь соотносятся между собой? Частоты, количество ядер или размеры кеш-памяти разных процессоров сопоставлять очень просто, но как быть с эффективностью микроархитектур? Чтобы разобраться, нужны специальные тесты, и мы решили провести именно такое исследование. Им мы ответим на вопрос: который из производителей x86-процессоров – AMD или Intel – обладает сейчас наиболее эффективной микроархитектурой? ⇡#Как выглядит противостояние Ryzen 5000 и Rocket Lake на первый взгляд В обзорах новых процессоров Rocket Lake, Core i7-11700K и Core i9-11900K, мы пришли к выводу, что старшие представители этой серии могут соперничать по производительности с процессорами Ryzen 5000 толькосреднего уровня — например, с Ryzen 7 5800X. Так получается потому, что AMD сумела обойти Intel по степени интеграции своих решений. Современные десктопные CPU на базе микроархитектуры Zen 3 могут содержать до 16 вычислительных ядер, максимум же для Rocket Lake – это восемь ядер. Преимущество AMD в числе ядер обуславливается двумя факторами: внедрением более современного техпроцесса и переходом на чиплетный дизайн. Процессоры семейства Ryzen 5000 для десктопов могут содержать внутри сразу два 7-нм полупроводниковых кристалла с восемью ядрами, что как раз и даёт в сумме до 16 ядер в старших модификациях. Каждый такой кристалл имеет площадь всего 81 мм2, то есть они значительно меньше площади восьмиядерного кристалла Rocket Lake, составляющей 276 мм2. Такой огромный разрыв в размерах обусловлен тем, что Intel для выпуска настольных процессоров продолжает использовать старую 14-нм технологию, которая была введена в обиход в далёком 2014 году. Именно производственный аспект не позволяет добавить в Rocket Lake свыше восьми ядер. Но при сравнении размеров кристаллов нужно иметь в виду пару нюансов. Во-первых, архитектура процессоров Intel предполагает наличие в них интегрированного графического ядра, которое в рассматриваемых процессорах AMD не предусмотрено. Во-вторых, у Intel в процессорный кристалл включены также контроллеры памяти и PCIe, в то время как чиплетная компоновка процессоров Ryzen предполагает использование внешних контроллеров, располагающихся в отдельном чиплете, выпускаемом по 12-нм технологии. И это – одно из слабых мест дизайна современных Ryzen: внешний контроллер памяти работает с более высокими задержками по сравнению с контроллером памяти, расположенным по соседству с вычислительными ядрами на том же кристалле. В результате представители серии Rocket Lake выигрывают у Ryzen по эффективности работы с памятью, что может стать не менее весомым, чем число ядер, фактором для некоторых приложений — например, из числа современных игр. Впрочем, зная о важности скорости доступа к данным, AMD приняла меры по компенсации более высоких задержек своего контроллера памяти. Эти меры – очень большой L3-кеш (так называемый GameCache), поместить который в Ryzen стало возможным благодаря всё тому же современному техпроцессу с нормами 7 нм. В результате Ryzen 5000 могут похвастать кеш-памятью третьего уровня суммарным объёмом 32 или даже 64 Мбайт, в то время как кеш в старших Rocket Lake имеет размер не более 16 Мбайт. Но в совершенствовании ещё одной ключевой характеристики процессоров – тактовой частоты – 7-нм технология помогла AMD не слишком сильно. Процессоры серии Ryzen 5000 ограничены частотой 4,9 ГГц. Выше этой планки не может прыгнуть даже старший 16-ядерный Ryzen 9 5950X при нагрузке на одно-единственное ядро. Оппоненты же из числа Rocket Lake при нагрузке на одно ядро могут брать частоты 5,2-5,3 ГГц, причём величина 5,1 ГГц доступна старшей модели Core i9-11900K даже при нагрузке на все ядра. Иными словами, в каких-то случаях 14-нм технология Intel совсем не кажется устаревшей и неактуальной. Тем не менее нельзя отрицать, что «толстый» техпроцесс создаёт существенные проблемы с тепловыделением и энергопотреблением. Старшие Rocket Lake отнесены производителем к тепловому пакету 125 Вт, но это – очень оптимистичная оценка. Как показали наши тесты, в реальности современные процессоры Intel могут затребовать при работе вдвое больше этой величины. Это не скрывает и сам производитель, заявляя для своих флагманов предел потребления PL2 на уровне 250 Вт. Что же касается AMD, то её процессоры с TDP, установленным в 105 Вт, прекрасно вписываются в 142-ваттные границы по энергопотреблению и тепловыделению. В конечном итоге получается довольно неоднозначная картина. Старшие процессоры Ryzen 5000 определённо выигрывают у соперников по возможностям многопоточной обработки за счёт большего количества ядер. И для решения ресурсоёмких задач они, вне всяких сомнений, намного предпочтительней. Однако там, где более восьми ядер не нужно, выбор между Ryzen 5000 и Core 11-го поколения совсем не очевиден. Выше мы прошлись по основным количественным характеристикам обоих вариантов, и, как можно заметить, однозначного лидера определить невозможно.
К сказанному можно добавить и ещё один штрих – поддержку в процессорах Rocket Lake инструкций набора AVX512, которой нет в конкурирующем семействе. Пока данный фактор не имеет большого практического значения, но в перспективе он может стать важным, поскольку эти инструкции будут внедряться в алгоритмах, построенных на нейронных сетях. Иными словами, неопределённостей, возникающих при сопоставлении Ryzen 5000 и Core 11-го поколения, очень много, и спорить о преимуществе того или иного семейства можно очень долго. Но на висящий в воздухе вопрос о том, чья микроархитектура более эффективна по удельной производительности, мы можем ответить однозначно. ⇡#Описание тестовой системы и методики тестирования Для сравнения микроархитектур Zen 3 и Cypress Cove мы взяли два свежих восьмиядерных процессора, Ryzen 7 5800X и Core i7-11700K, и сопоставили их быстродействие при работе на одинаковой частоте, с одинаковой памятью и с одной и той же производительной видеокартой. В качестве такой опорной частоты было выбрано значение 4,0 ГГц – оно обусловлено нашим желанием добавить в тестирование пару более старых процессоров, Ryzen 7 3800XT и Core i7-10700K, заставить первый из которых стабильно работать на более высокой «круглой» частоте не представляется возможным. Пренебрегать же участием в тестах носителей микроархитектр Zen 2 и Skylake нам очень не хотелось, потому что оно позволяет проверить утверждения обоих производителей о величине роста показателя IPC при переходе к Zen 3 и Cypress Cove. Для наглядности приведём таблицу с формальными характеристиками всех четырёх участников тестирования. Однако указанные в этой таблице частоты в контексте данного тестирования значения почти не имеют – большинство тестов выполнялось, когда все процессоры работают на фиксированной тактовой частоте и не пользуются никакими технологиями авторазгона, которые в обычной жизни гибко подстраивают частоты под нагрузку.
В итоге в состав тестовой системы вошли следующие комплектующие:
Оперативная память в системах и AMD, и Intel работала в режиме DDR4-3600 с таймингами по XMP-профилю. Это также означает, что для процессоров Ryzen использовался синхронный режим контроллера памяти и частота Infinity Fabric, равная 1800 МГц, а для процессоров Core последнего поколения — режим Gear 1 и частота контроллера памяти 1800 МГц. Тестирование выполнялось в операционной системе Microsoft Windows 10 Pro (20H2) Build 19042.572 с использованием следующего комплекта драйверов:
Описание использовавшихся для измерения вычислительной производительности инструментов: Приложения:
Игры:
Во всех игровых тестах в качестве результатов приводится среднее количество кадров в секунду, а также 0,01-квантиль (первая перцентиль) для значений FPS. Использование 0,01-квантиля вместо показателей минимального FPS обусловлено стремлением очистить результаты от случайных всплесков производительности, которые были спровоцированы не связанными напрямую с работой основных компонентов платформы причинами.
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
|