⇣ Содержание
Опрос
|
реклама
Ryzen 5000 (Zen 3) против Rocket Lake (Cypress Cove): что показал тест IPC
⇡#Производительность в приложениях В тесте процессоров последних поколений, проведённом на единой тактовой частоте, сразу же бросается в глаза, что и Zen 3, и Cypress Cove – это действительно заметно усовершенствованные микроархитектуры. В обоих случаях новые процессоры оказываются быстрее предшественников на двузначное число процентов. Впрочем, и там и там обещанных 19 % прироста мы не видим. Если говорить о переходе от Zen 2 к Zen 3, то удельная производительность увеличилась в среднем на 10 %, а при переходе от Skylake к Cypress Cove (или, если угодно, от Comet Lake к Rocket Lake) – на 12 %. При этом, естественно, есть примеры как более высокого, так и более низкого прироста. Лучше всего на смену микроархитектуры в случае AMD реагирует архиватор 7-zip, шахматный движок Stockfish и приложение для видеообработки на основе ИИ Topaz Video Enhance AI. В случае же Intel в лидерах по выигрышу оказывается рендеринг, перекодирование видео и снова Stockfish. При этом в сравнении удельной производительности Skylake и Cypress Cove наблюдается и единичный случай «отрицательного роста» — в архиваторе 7-zip, что, очевидно, связано с увеличением латентности всей подсистемы кеш-памяти в процессорах Rocket Lake. Поскольку прирост, обеспечиваемый новыми микроархитектурами разных производителей, различается несильно, между удельным быстродействием Zen 3 и Cypress Cove продолжает оставаться примерно такой же отрыв, как и между Zen 2 и Skylake. Это значит, что в ресурсоёмких приложениях, где на первом плане находится вычислительная производительность ядер, при одинаковой частоте Ryzen 5000 определённо быстрее Rocket Lake. По нашим тестам его отрыв составляет в среднем 5 %, но в Stockfish, при обработке фотографий или при компиляции программного кода Ryzen может опережать оппонента и на 15, и даже на 25 %. Правда, есть и единичные обратные примеры, например, в шифровании или в Topaz Video Enhance AI процессор семейства Rocket Lake выглядит эффективнее предложений AMD. Впрочем, общей картины это не меняет. Обобщённо можно говорить о том, что Intel в процессорах Rocket Lake смогла перекрыть по удельной производительности Zen 2, но до Zen 3 так и не дотянулась. И это значит, что между передовыми микроархитектурами AMD и Intel продолжает оставаться разрыв примерно в полшага длиной. Рендеринг: Обработка фото: Работа с видео: Перекодирование видео: Компиляция: Архивация: Шахматы: Шифрование: Ситуация с игровой производительностью заметно отличается от той картины, которую мы наблюдали в приложениях. Во-первых, при нагрузке такого рода процессоры Intel чувствуют себя гораздо увереннее благодаря низким латентностям при межъядерном обмене данными и низким задержкам при работе с памятью. Во-вторых, прирост, который произошёл при переводе настольных CPU на новые микроархитектуры Zen 3 и Cypress Cove, здесь совсем иной по характеру. Так, восьмиядерный Ryzen на базе ядер Zen 3 при одинаковой частоте обходит своего предшественника с ядрами Zen 2 в среднем на 12 %. Но в отдельных случаях прирост может превышать и 20 процентов. Дело в том, что для игр очень весомым аргументом оказалось произошедшее в Ryzen последнего поколения расширение CCX-комплексов, которые собраны теперь не из четырёх, а из восьми ядер. Это не только дало каждому ядру прямой доступ к полному объёму L3-кеша, но и приблизило ядра друг к другу в смысле скорости обмена данными. Что же касается процессоров Rocket Lake, то их удельная производительность демонстрирует несколько меньший прогресс. Смена поколений микроархитектуры от Skylake к Cypress Cove (без учёта вклада тактовой частоты) принесла Intel лишь 7 % увеличения среднего FPS. Тем не менее при равной тактовой частоте свежий процессорный дизайн Intel оказывается немножко быстрее конкурирующего Zen 3. Но так происходит не благодаря значительности микроархитектурных улучшений в Rocket Lake, а из-за того, что и предшествующие Comet Lake были довольно сильны в играх. Наглядно проследить всё это можно по показателю среднего FPS, рассчитанному по десяти играм, который приводится на следующем графике. Если обратиться к результатам тестирования уравненных по частоте восьмиядерников в отдельных играх, то можно заметить интересную закономерность. Rocket Lake часто выдаёт лучшие показатели в части минимального FPS, в то время как по средней тактовой частоте в пяти из десяти игр выигрывает Ryzen 7 5800X. ⇡#Энергопотребление и температура Не менее интересным кажется аспект энергетической эффективности современных процессорных микроархитектур, если они приведены к постоянной тактовой частоте. Для этого теста мы пронаблюдали за потреблением и температурой участников тестирования при условии, что они работают не только при одинаковой частоте 4,0 ГГц, но и при постоянном и равном напряжении 1,1 В. Если посмотреть на ситуацию при рендеринге, который равномерно загружает работой все вычислительные ядра, то станет хорошо понятно, что старый 14-нм техпроцесс действительно портит имеющиеся у Intel процессоры. И Comet Lake, и Rocket Lake в одних и тех же условиях потребляют больше, чем 7-нм процессоры конкурента. Причём если в случае с процессором на микроархитектуре Skylake это сказывается не столь критично, то Rocket Lake, основанный на сложных ядрах Cypress Cove, обгоняет по потреблению более быстрый Ryzen 7 5800X чуть ли не в полтора раза. Правда, если перейти к температурному графику, то ситуация выглядит совсем по-иному. Полупроводниковые кристаллы, произведённые по 14-нм техпроцессу, выигрывают у 7-нм кристаллов в температурном режиме благодаря большой площади поверхности. От них проще отводить тепло, поэтому Core i7-11700K при прочих равных работает с заметно более низкими температурами по сравнению с Ryzen 7 5800X. Это довольно парадоксальный результат, но нужно иметь в виду, что из него совершенно не следует, что процессорам Intel не требуются мощные системы охлаждения. Как раз наоборот, чтобы удерживать температуру восьмиядерных Rocket Lake в рамках, нужны кулеры, способные рассеивать порядка 200 Вт тепла. Ещё более наглядно прожорливость новых ядер Cypress Cove видна при игровом тестировании. В то время как процессоры Ryzen и Comet Lake в Hitman 3 показывают достаточно близкие аппетиты, работающий при такой же частоте и таком же напряжении Rocket Lake требует заметно больше электроэнергии. Правомерно будет сказать, что, улучшив в ядрах Cypress Cove удельную производительность на гигагерц, разработчики Intel пожертвовали их энергоэффективностью. По быстродействию в пересчёте на ватт Rocket Lake заведомо проигрывает и конкурентам, и предшественникам. У AMD же прогресс в микроархитектуре не приводит ни к каким печальным последствиям. Напротив, представители поколений Zen 2 и Zen 3 показывают близкое энергопотребление и тепловыделение на фоне роста производительности. Иными словами, разработчики микроархитектуры Zen идут по пути явного улучшения энергоэффективности своих решений. Зато в температурном тесте ситуация оказывается именно такой, какой она и должна быть по логике вещей. Процессоры, построенные на более новых микроархитектурах, имеют более низкие рабочие температуры. Однако здесь вновь нужно оговориться, что в данном случае такое соотношение результатов определяется в том числе и площадью полупроводниковых кристаллов, и специальными мерами, которые производители применяют для улучшения теплоотвода. Например, уместно будет вспомнить, что в процессорах Comet Lake и Rocket Lake компания Intel специально уменьшила толщину кристаллов с тем, чтобы улучшить теплопередачу. После того как представление о сравнительной производительности Ryzen 7 5800X и Core i7-11700K на одинаковой тактовой частоте 4 ГГц получено, стоит посмотреть, какую относительную надбавку к быстродействию эти процессоры получают при переходе от фиксированных 4 ГГц к своим штатным режимам со всеми включёнными технологиями авторазгона. Иными словами, мы предлагаем оценить, кто из производителей сумел сильнее оттолкнуться от четырёхгигагерцевой базы и обеспечил большую дельту в производительности, гибко управляя тактовой частотой. Если сравнивать производительность в ресурсоёмких приложениях, то получается, что средняя разница составляет около 11 % в обоих случаях. Это отражает тот факт, что в реальности Ryzen 7 5800X и Core i7-11700K функционируют на близких тактовых частотах, несмотря на кардинальную разницу в техпроцессе и, соответственно, энергопотреблении и тепловыделении. Похожая ситуация складывается и в играх – здесь прирост частоты кадров при переходе от 4 ГГц к работе на номинальных частотах составляет порядка 5 % как для Ryzen 7 5800X, так и для Core i7-11700K. Следовательно, на данный момент быстродействие наиболее современных процессоров разных производителей с одинаковым числом ядер в первую очередь зависит от эффективности их микроархитектур, а не от взятых ими тактовых частот. Однако если на следующем витке совершенствования техпроцессов кто-то из пары AMD—Intel сможет оторваться от соперника в частотной формуле, это может дать такому производителю определённую фору. Впрочем, необходимо сделать оговорку, что процессорам, выпущенным по 7- и 14-нм техпроцессам, близкие частоты даются по-разному. Мы подробно разбирали этот вопрос в обзоре Core i7-11700K, но вкратце напомним, что по сравнению с Ryzen 7 5800X похожий по частоте восьмиядерный Core i7-11700K потребляет примерно в полтора раза больше. Следить за происходящим на процессорном рынке становится всё интереснее и интереснее. Теперь расшевелились уже оба основных производителя x86-процессоров, и развитие микроархитектур пошло куда веселее, чем раньше. В последних поколениях процессоров и AMD, и Intel смогли провести глубокую модернизацию микроархитектуры и заметно подтянули производительность интенсивным методом – за счёт повышения КПД вычислительных ядер. Сами процессорные разработчики обещали, что и в Ryzen 5000, и в Rocket Lake показатель IPC, то есть удельная производительность при фиксированной частоте, вырос на 19 %. По нашим прикидкам, это некоторое преувеличение, но тем не менее процессоры последнего поколения обоих производителей действительно демонстрируют прирост IPC на двузначное число процентов. Что интересно — и там и там мы зафиксировали близкий эффект от сделанных микроархитектурных усовершенствований, то есть AMD и Intel набрали примерно одинаковый темп в развитии процессорных дизайнов, хотя они и движутся совершенно различными путями. Впрочем, всё это вовсе не означает, что разные процессоры последних поколений похожи по удельной производительности. В действительности Intel сейчас находится в положении догоняющей стороны, поскольку до Rocket Lake она не занималась совершенствованием микроархитектур десктопных процессоров в течение почти шести лет. Поэтому сейчас её предложения находится как минимум на полшага позади. Применённая в Rocket Lake микроархитектура Cypress Cove эффективнее, чем Zen 2, но до Zen 3 ей всё-таки далеко. Кроме того, Zen 3 выигрывает не только в удельной производительности. Процессоры, построенные на этом дизайне, намного более энергоэффективны, что только подчёркивает неразрешённые проблемы Intel, которая всё ещё вынуждена пользоваться устаревшим технологическим процессом с 14-нм нормами. Тем не менее у процессоров Rocket Lake всё-таки нашлось сильное место – они могут предложить неплохую игровую производительность, которая подпитывается их низколатентным контроллером памяти и быстродействующей внутренней кольцевой шиной. Однако Ryzen 5000 в играх совсем не выглядят отстающими: в большинстве случаев они выдают очень близкую удельную производительность. Таким образом, в итоге, если принять во внимание уверенное превосходство микроархитектуры Zen 3 в вычислительных задачах, никаких сомнений в том, кто из разработчиков процессоров находится сейчас в позиции лидера с технологической точки зрения, не возникает.
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
|