Новости Hardware → нанотехнологии
Главная новость

Уплотняем кеш-память: создана самая маленькая в мире ячейка SRAM

Уплотняем кеш-память: создана самая маленькая в мире ячейка SRAM

Традиционно массив памяти SRAM в составе процессоров занимает приличную площадь (как правило, для кеш-памяти первых трёх уровней). Его сложно уменьшить, поскольку каждая ячейка SRAM содержит до шести транзисторов. Память SRAM должна быть максимально производительной и, поэтому, опирается на логику, а не на заряд в конденсаторе, как обычная память DRAM. Всё это также создаёт проблемы с масштабированием ячейки SRAM при переходе на более мелкие технологические нормы производства. Новые техпроцессы, кстати, всегда начинают испытывать с выпуска массивов SRAM. Если это получается, то затем переходят к опытному выпуску процессорной логики.

На сегодня самой маленькой ячейкой SRAM могла похвастаться компания Samsung. По этому параметру она обогнала компанию Intel. Как мы сообщали, Samsung представила 6-транзисторную ячейку SRAM площадью 0,026 мкм2. Для выпуска 256-Мбит массива опытной памяти был использован 7-нм техпроцесс Samsung 7LPP с частичным использованием EUV-сканеров. Через несколько месяцев этот техпроцесс будет запущен в коммерческих масштабах. Выпустить ячейку SRAM ещё меньшей площади сумели бельгийский центр разработок Imec и стартап Unisantis. Пусть вас не смущает упоминание стартапа. Главным технологом и директором компании Unisantis является изобретатель NAND-флеш Фудзио Масуока (Fujio Masuoka). В своё время он даже получил за это награду европейского уровня Economist Awards.

Быстрый переход

Samsung планирует начать выпуск 3-нм чипов в 2021 году

До мая 2016 года у полупроводникового подразделения компании Samsung Electronics не было особенной необходимости работать на публику, например, делиться планами и тонкостями грядущих технологических процессов. После означенной выше даты Samsung выделила из полупроводникового подразделения группу для контрактного производства чипов и оказалась вовлечена в увлекательный процесс популяризации фирменных техпроцессов. Компания TSMC делает это давно и со вкусом, к примеру, регулярно и в красках расписывая, как она начнёт выпускать 5-нм чипы и даже 3-нм. Что же, Samsung решила взять опыт конкурента на вооружение и сегодня удачно его применила.

wsj.com

wsj.com

В Санта-Кларе на домашней конференции Samsung Foundry Forum (SFF) 2018 USA представители южнокорейского производителя рассказали о будущих техпроцессах с нормами 7 нм, 5 нм, 4 нм и 3 нм. Людям необходимы всё более компактные и мощные мобильные решения с постоянным подключением к Сети. Поэтому в компании Samsung трепетно относятся к важности непрерывного внедрения новейших техпроцессов, чтобы удержать баланс между потреблением и производительностью.

Так, техпроцесс 7LPP (7nm Low Power Plus) будет готов к выпуску решений во втором полугодии текущего года. Правда, полный комплект IP-блоков в виде готовых для применения разработчиками решений для техпроцесса 7LPP будет подготовлен лишь в первой половине 2019 года. Это отсрочит появление массовых 7-нм чипов, но не отпугнёт тех, которые готовы самостоятельно разрабатывать схемотехнику для скорейшего выпуска 7-нм продукции. Например, компания Qualcomm готова выпускать 5G-чипы с использованием техпроцесса Samsung 7LPP. Это, кстати, будет первый в индустрии техпроцесс, который станет частично использовать сканеры диапазона EUV.

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Следующим техпроцессом, который Samsung намерена внедрить в производство в 2019 году, станет техпроцесс 5LPE (5nm Low Power Early). Отметим, для техпроцесса с нормами 7 нм нет «раннего» варианта типа 7LPE (Early). В компании сразу решили переходить к частичному использованию сканеров EUV. Поэтому техпроцесс 5LPE станет чем-то вроде развитой версии техпроцесса 7LPP, что позволит уменьшить площадь кристаллов и увеличить энергоэффективность решений. Подчеркнём, это всё ожидается в следующем году, когда TSMC будет только начинать использовать сканеры EUV для второго поколения своего 7-нм техпроцесса. Так что у Samsung очень агрессивный план по внедрению новых техпроцессов.

Каналы транзисторов превратятся в «перемычки» из нанопроводов и наностраниц (изображение IBM)

Каналы транзисторов превратятся в «перемычки» из нанопроводов и наностраниц (изображение IBM)

В 2020 году уже на основе внедрённого в производство техпроцесса 5LPE и с учётом всех выявленных недочётов компания Samsung планирует внедрить в производство техпроцессы 4LPE/LPP (4nm Low Power Early/Plus). Что интересно, решения с нормами 4 нм сохранят структуру вертикальных транзисторов FinFET, хотя ранее компания на этом этапе планировала перейти на кольцевые затворы. Очевидно, было принято решение не экспериментировать, а внедрять то, что пока ещё может работать. Техпроцесс 5LPP отсутствует в планах компании, а заменить его, по-видимому, решено 4-нм техпроцессом.

Реальное ихображение транзисторов с затворами вокруг наностраниц (IBM, техпроцесс 5 нм)

Реальное изображение транзисторов с затворами вокруг наностраниц (IBM, техпроцесс 5 нм)

Техпроцесс с нормами 3 нм и кольцевыми затворами Gate-All-Around в виде версий 3GAAE/GAAP (3nm Gate-All-Around Early/Plus) компания собирается внедрить в 2021 году. Кольцевые затворы будут окружать транзисторные каналы со всех сторон, что позволит удержать рабочие токи на заданном уровне, несмотря на сильно измельчавшие каналы и площади затворов. Уточним, Samsung выбрала в качестве затворов наностраницы, а не нанопровода. Проще говоря, кольцевые затворы в разрезе будут выглядеть как прямоугольники со скруглёнными краями. Подробные и ожидаемые характеристики транзисторов для всех указанных техпроцессов Samsung обещает обнародовать позже.

Источник:

Intel приступила к согласованию плана по расширению производства в Израиле

Ещё в феврале стало известно, что компания Intel в очередной раз готовится расширить в Израиле производство процессоров. Речь идёт о заводе Fab 28 в Кирьят-Гате. В конце 2016 года Intel завершила очередной этап модернизации производства с намерением начать в Израиле массовый выпуск 10-нм процессоров. В модернизацию было вложено $6 млрд. К сожалению, 10-нм техпроцесс в массы пока не пошёл. Уровень брака при выпуске 10-нм продукции оказался настолько высоким, что компания отложила начало массового выпуска этой продукции до следующего года.

Вынужденный простой или неполную загрузку мощностей на Fab 28 компания решила использовать для проведения массовых работ по расширению производства. На днях, как сообщают информированные источники, Intel отправила в соответствующие регулирующие органы окончательный вариант плана по расширению завода Fab 28. Согласно плану, будут построены корпуса для новых линий и чистой комнаты. На эти цели в период с 2018 по 2020 годы компания потратит $5 млрд. Ещё $500 млн она получит в виде субсидий от израильского правительства и до 2027 года будет платить сниженный на 5 % налог.

Завод Fab 28 в Кирьят-Гате (Intel)

Завод Fab 28 в Кирьят-Гате (Intel)

Из планов Intel следует, что 10-нм техпроцесс приходит всерьёз и надолго. С учётом того, что он и так задержится минимум на 2 года, компания рассчитывает эксплуатировать данные технологические нормы производства до 2022 года и даже позже. Нетрудно представить, что переход на 7-нм техпроцесс компания Intel освоит одной из последних среди лидеров полупроводникового производства. Это даёт компании AMD шанс через год–другой вывести на рынок решения, технологически превосходящие предложения Intel. Но это уже другая история.

Источник:

GlobalFoundries изучает вопрос строительства завода для выпуска 3-нм чипов

Компания TSMC, как известно, для производства полупроводников с нормами 5 нм и 3 нм строит по одному новому заводу для каждого техпроцесса. Компания GlobalFoundries может последовать по похожему пути. Правда, за одним исключением. Второй в мире по величине производитель чипов может пропустить 5-нм производство и сразу перейти с 7-нм техпроцесса на 3-нм.

В интервью нашим коллегам с сайта EE Times новый исполнительный директор GlobalFoundries Том Каулфилд (Tom Caulfield) признался, что на сегодняшний день он не может сказать, будет ли разработчиками чипов востребован 5-нм техпроцесс, но точно уверен, что 3-нм техпроцесс предложит достаточно преимуществ по сравнению с техпроцессом с нормами 7 нм, чтобы заинтересовать разработчиков, не имеющих своих заводов.

Означает ли это, что компания собирается пропустить 5-нм техпроцесс, как она сделала это с 10-нм техпроцессом? С учётом тех сложностей, которые приходится преодолевать, это может оказаться правильным или, точнее, экономически обоснованным решением. В конце концов, TSMC, которая идёт напролом, зарабатывает примерно в 6 раз больше денег, чем GlobalFoundries. Последняя просто не может позволить себе бить по площадям и вынуждена избирательно прикладывать силы и средства.

Заводской комплекс GlobalFoundries в Дрездене (бывший завод AMD)

Заводской комплекс GlobalFoundries в Дрездене (бывший завод AMD)

Вопрос строительства завода для 3-нм производства тоже требует изучения. С одной стороны, GlobalFoundries хотела бы построить предприятие в США, укрепив местную экономику и обеспечив государству технологическую безопасность. Но те же заводы в Германии приносят компании существенно больше прибыли, чем завод Fab 8 в Нью-Йорке. Заводы в Дрездене дают GlobalFoundries 25 центов со вложенного доллара (по словам Каулфилда). В США этот показатель существенно ниже. У компании есть площадки для заводов в Сингапуре и Китае. Однако с нынешней политикой Трампа подобные инвестиции в Азию могут быть банально запрещены.

Производственный комплекс GlobalFoundries Fab 8. Фото FinanceFeeds.net

Производственный комплекс GlobalFoundries Fab 8. Фото FinanceFeeds.net

Оставим муки выбора руководству GlobalFoundries. Но напомним, что видными клиентами компании считаются AMD и IBM. Каждая из этих компаний по-своему важна для экономики США и для обеспечения национальной безопасности этой страны. Если власти расщедрятся на финансовую поддержку проекта, выбор в пользу США будет очевиден и предопределён.

Источник:

TSMC внедряет настоящую 3D-упаковку полупроводников

Замедление темпов перехода на новые технологические нормы для выпуска полупроводников заставляет производителей и разработчиков искать иные средства для увеличения сложности и функциональности решений. Застой уже на горизонте. Техпроцесс с нормами 5 нм обещает родиться в муках и прийти надолго. Один из способов обойти это ограничение заключается в возможности упаковать в один корпус микросхемы несколько кристаллов, чтобы внешне всё работало как один чип с минимальными задержками. При этом кристаллы должны быть расположены как можно ближе друг к другу.

NVIDIA Tesla P100 (пример упаковки TSMC )

NVIDIA Tesla P100 (пример упаковки TSMC CoWoS, GPU и HBM)

Другое требование — соединяющие кристаллы проводники должны быть скрыты внутри кристаллов, а не так, как раньше — в виде сотен тоненьких проводников, которые оплетают кристаллы со всех сторон и уходят «корнями» в контактную площадку вокруг основания кристаллов. Сегодня для этого используются так называемые сквозные соединения TSVs (каналы металлизации), диаметр которых снизился с сотен до единиц микрон. С использованием TSVs-соединений научились выпускать память HBM, однако логику пока не упаковывают в 3D. Для этого всё ещё используется упаковка 2.5D. С помощью упаковки 2.5D выпускаются GPU AMD с памятью HBM (упаковка компаний Amkor Technology и Advanced Semiconductor Engineering) и GPU NVIDIA с памятью HBM2 (упаковывает TSMC). Данный способ предполагает использование кремниевого моста, что значительно увеличивает площадь и объём решения. Какое же это 3D?

Два актуальных варианта 2.5D упаковки кристаллов на заводе TSMC

Два актуальных варианта 2.5D упаковки кристаллов на заводе TSMC

Уточним, 2.5D-упаковка TSMC называется CoWoS (Chip on Wafer on Substrate). Использовать CoWoS компания начала в 2012 году для упаковки 28-нм решений. «Настоящее 3D» компания обещает реализовать в упаковке WoW (wafer-on-wafer). Технология WoW подразумевает монтаж кристаллов непосредственно друг на друга либо со стороны элементов, либо со стороны пластин. В любом случае в месте стыка должны быть созданы группы мельчайших контактов, которые надо будет совместить с величайшей точностью. Технология допускает монтаж двух или трёх кристаллов. В последнем случае, как нетрудно догадаться, вопрос отвода тепла от среднего уровня будет стоять довольно остро.

Пример упаковки Wafer on Wafer (Cadence)

Пример упаковки Wafer on Wafer (Cadence)

Кроме упаковки WoW компания предложила ряд других вариантов, часть из которых является недорогой альтернативой CoWoS. Так, TSMC расширила список технологий InFO (Integrated Fan Out). Если CoWoS и WoW ориентированы на высокопроизводительные решения (за счёт качественных соединений моста, либо в случае прямого контакта), то InFO — это просто залитые компаундом контактные группы и кристалл или кристаллы. По технологии InFO, например, с 2016 года выпускаются SoC для Apple и для других разработчиков SoC для смартфонов. Эта технология позволяет разместить над процессором модуль памяти и сделать конструкцию компактнее и тоньше (моста-то нет). С текущего года технология InFO получит четыре разновидности: Info-MS, InFO-oS, MUST (multi-stacking) и InFO-AIP.

Технологии Info-MS и InFO-oS помогут упаковать вместе с SoC память HBM и DRAM. Шаг контактов снижен с 5 до 2 мкм, а горизонтальное расположение кристаллов ещё немного снизит стоимость упаковки. Технология MUST поможет упаковать до трёх кристаллов в столбик (друг на друге), а технология InFO-AIP — это упаковка для радиокомпонентов с антенной сверху. Последний подход обещает на 10 % уменьшить площадь решения и на 40 % увеличить усиление антенны. Ожидается, что такие упаковки будут востребованы для выпуска решений для сетей 5G.

Источник:

Разработан дизайн энергонезависимой памяти DDR4 на углеродных нанотрубках

В интервью сайту EE Times исполнительный директор компании Nantero сообщил, что её специалисты завершили разработку энергонезависимой версии памяти DDR4 на основе уникальной ячейки памяти NRAM. Память NRAM компания Nantero разрабатывает свыше 15 лет. В основе ячейки лежат углеродные нанотрубки. Скорость переключения ячейки NRAM приближается к скорости работы типичной оперативной памяти. Например, скорость записи составляет 5 нс. В то же время ячейка NRAM не теряет информацию в случае пропадания питания. Сочетание скорости и энергонезависимость делают память на углеродных нанотрубках интереснейшим явлением в мире полупроводников. Интересно только одно, когда же NRAM появится на рынке?

Напомним, одной из первых выпускать микроконтроллеры со встраиваемой 55-нм памятью NRAM пообещала компания Fujitsu. Это должно было произойти в 2018 году. Руководство Nantero сообщило, что данное событие отодвинуто на 2019 год. Поскольку Nantero лишь создаёт проекты и распространяет их на основе лицензирования IP-блоков, компанию нельзя винить в задержках с производством.

Что касается разработки NRAM DDR4, то она рассчитана на выпуск с использованием техпроцесса с нормами 28 нм, что, кстати, идеально подходит для одного из стратегических инвесторов Nantero — крупнейшего в Китае контрактного производителя чипов компании SMIC (Nantero финансируется через подконтрольную SMIC структуру). На днях, что интересно, Nantero собрала очередной раунд инвестиций, получив определённую сумму от 8 компаний, 5 из которых в своё время стали самыми первыми инвесторами компании. Особенно в Nantero гордятся тем, что её разработки финансируют компании из списка 10 крупнейших в мире полупроводниковых производителей.

Память NRAM прошла заводские испытания (Nantero)

Память NRAM прошла заводские испытания (Nantero)

Массовое производство памяти NRAM DDR4 обещает оказаться не дороже выпуска памяти DRAM DDR4. Этому поспособствуют два фактора. Во-первых, возможность многослойной структуры, что напоминает структуру 3D NAND. Это позволит увеличить плотность записи без увеличения площади чипа. Во-вторых, схемотехническая реализация массива NRAM DDR4 много проще, чем массива DRAM DDR4. Например, перекрёстное строение NRAM (подобно ReRAM) требует намного меньше управляющих элементов в виде переключателей шин, чем в случае памяти типа DRAM.

Наконец, в компании сообщили, что ведутся разработки одиночных чипов NRAM для таких сфер использования, как кеширующие буферы для SSD и HDD. Также в компании подтвердили намерение проникнуть в сферу автомобильной электроники (память NRAM выдерживает экстремальные температуры без потери данных) и в сферу ИИ (без этого теперь никуда). Задел на будущее обозначен тем, что структура NRAM обещает сохранить работоспособность в случае снижения масштаба техпроцесса до 5 нм. Память NAND и DRAM подобным похвастаться не могут. Для одной и другой экономически выгодный предел производства заканчивается на 15 нм или чуть меньше.

Источник:

GlobalFoundries и Toppan Photomasks расширяют деятельность в Германии

Компания GlobalFoundries сообщила, что она вместе со своим партнёром Toppan Photomasks по совместному предприятию Advanced Mask Technology Center (AMTC) в Дрездене договорилась о расширении деятельности в течение нескольких следующих лет. Предприятие AMTC было организовано в 2002 году как СП между компаниями AMD, Infineon и DuPont Photomasks. И одна, и другая, и третья компания тем или иным способом лишились участия в AMTC. Нынешними владельцами AMTC являются арабо-американская компания GlobalFoundries и японская Toppan Photomasks. Смена владельцев не изменила вид деятельности AMTC — центр на базе собственного производства в Дрездене выпускает фотомаски (фотошаблоны) для производства полупроводников.

http://igi.com

http://igi.com

Деятельность AMTC не утратила актуальности. Предприятие стартовало с выпуска фотомасок для 90-нм и 65-нм техпроцессов и сегодня выпускает фотомаски для производства 14-нм чипов с использованием FinFET-структур и маски для производства чипов на пластинах FD-SOI. В 2017 году на модернизацию и расширение производства было выделено 100 млн евро ($124 млн). С 2002 года в предприятие AMTC в Дрездене вложено порядка $600 млн. В последние годы объёмы выпуска фотомасок росли свыше 10 % в год. В 2003 году на заводе работало 170 инженеров. Сегодня их число выросло до 250 человек.

Для компании GlobalFoundries работа предприятия важна не только как источник дополнительного дохода, а центр выпускает фотомаски для предприятий во всём мире, это также основа производства самой компании и источник успеха компании AMD. От качества и своевременности изготовления фотошаблонов зависит выпуск процессоров AMD Ryzen, графических процессоров Radeon и многого другого. На новом этапе сотрудничества GlobalFoundries и Toppan углубятся в производство фотомасок для техпроцессов с нормами менее 14 нм, включая фотошаблоны для работы с проекцией в сверхжёстком ультрафиолетовом диапазоне (EUV).

Источник:

Samsung предложит клиентам производство целого спектра решений на 200-мм пластинах

В мае прошлого года компания Samsung формально выделила контрактное производство чипов в дочернюю компанию Samsung Foundry. Тем самым производитель электроники сделал попытку устранить конфликт интересов или опасность оного между своими заказами и заказами сторонних компаний. Параллельно Samsung стремится диверсифицировать контрактное производство, чтобы удовлетворить как можно больше заказчиков, и надеется привлечь к сотрудничеству множество мелких фирм, для чего берётся изготавливать многопроектные пластины, которые объединяют заказы нескольких компаний.

Завод Line-6 компании Samsung под Сеулом

Завод Line 6 компании Samsung под Сеулом

На днях Samsung сообщила о расширении спектра продукции, которую она будет выпускать по контрактам на заводе Line 6 в Кихыне (пригород Сеула). Линии предприятия Line 6 обрабатывают 200-мм полупроводниковые подложки, каждая из которых может нести сотни и тысячи дискретных элементов. Обычно простая логика и дискретные элементы изготавливаются на пластинах меньшего диаметра, тогда как 200-мм и 300-мм кремниевые подложки производители задействуют для выпуска микроконтроллеров, заказных БИС и разного рода процессоров.

Пример 200-мм пластины с чипами (www.lesechos.fr)

Пример 200-мм пластины с чипами (www.lesechos.fr)

Итак, контрактным клиентам Samsung на заводе Line 6 будут доступны для заказа решения со встроенной флеш-памятью (eFlash), силовые элементы (Power), драйверы дисплеев (DDI, display driver IC), CMOS датчики изображения (CIS), радиочастотные компоненты (RF), решения для вещей с подключением к Интернету (IoT) и сканеры отпечатков пальцев. Доступный для выпуска всего этого разнообразия техпроцесс будет колебаться от 180 нм до 65 нм.

Встроенную флеш-память компания будет выпускать либо с нормами 130 нм, либо с нормами 65 нм. Силовые чипы будут выпускаться как 130-нм, так и 90-нм. Для выпуска драйверов дисплеев может быть использован 180-нм, 130-нм, 90-нм и 70-нм техпроцессы. Датчики изображений будут только 90-нм. Радио и IoT примерят на себя 90-нм техпроцесс и, возможно, это будет особенный техпроцесс для выпуска малопотребляющих решений. Сканеры отпечатков пальцев будут 180-нм. Желающие могут начинать записываться в очередь.

Источник:

Cadence и Imec создают проект 3-нм 64-битного процессора

Компания Cadence и бельгийский институт Imec опубликовали пресс-релиз, в котором раскрыли планы по разработке 64-битного процессора для опытного выпуска с использованием 3-нм техпроцесса. Доработанные особым образом библиотеки и инструменты Cadence по проектированию чипов, а также опыт и знания специалистов Imec в области полупроводниковой литографии открывают возможность раннего воплощения в кремнии 3-нм процессора. В опытное производство цифровой проект будет направлен позднее в текущем году с целью выпустить рабочий чип до окончания года.

Базовая конструкция сканера диапазона EUV

Базовая конструкция сканера диапазона EUV

Опытное производство и фотошаблоны для выпуска 3-нм чипа готовит институт Imec. В производстве решения будут задействованы как 193-нм сканеры и иммерсионная литография (с погружением в жидкость), так и сканер диапазона EUV. Ранее Cadence и Imec уже работали вместе над проектом по выпуску опытного 5-нм решения и намерены перенести опыт сотрудничества на выпуск опытного 3-нм процессора. Ранний доступ к опытному производству поможет обнаружить слабые места в техпроцессе задолго до его внедрения в массовое производство. Например, таким образом было обнаружено случайное появление дефектов в рамках опытного выпуска 5-нм решений.

Предполагается, что опытный 3-нм процессор будет производиться с двойной проекцией в случае использования EUV-сканеров (по два фотошаблона на рабочий слой и, соответственно, по два прохода сканером) и с четырьмя фотошаблонами на слой для остальных рабочих слоёв микросхемы с использованием 193-нм сканера (self-aligned quadruple patterning, SAQP). Со временем, когда ASML выпустит EUV-сканеры с улучшенной оптической системой (с цифровой апертурой 0,5 или выше), для обработки каждого слоя с помощью EUV-сканеров будет достаточно одного прохода сканером и одного фотошаблона. Но это произойдёт после 2022 года.

Перспективы освоения новых технологических норм с помощью сканеров ASML (ASML)

Перспективы освоения новых технологических норм с помощью сканеров ASML (ASML)

Кроме собственно уменьшения масштаба технологических норм 3-нм полупроводники потребуют других новшеств. В частности, два первых металлических слоя должны быть выполнены из кобальта. Это снизит эффект электромиграции и уменьшит сопротивление проводников. Также потребуется изменить структуру транзисторов. Транзисторы с высокими монолитными затворами-рёбрами FinFET уйдут в прошлое, а вместо них появятся составные затворы из нанопроводников или наностраниц.

Источник:

Производство с нормами 5 нм и сканерами EUV может быть отложено

В принципе, началу производства 7-нм чипов с использованием полупроводниковой литографии в крайнем ультрафиолетовом диапазоне уже ничего не мешает. Как уже не раз сообщалось, компания Samsung приступит к выпуску 7-нм продукции во второй половине текущего года. Она первой начнёт использовать сканеры диапазона EUV с длиной волны 13,5 нм. Компании GlobalFoundries и TSMC присоединятся к ней в этом начинании в 2019 году. В этот период сканеры EUV компании ASML будут вооружаться источниками излучения мощностью 250 Вт. Под эту мощность для 7-нм производства уже разработан и опробован фоторезист (материал, с помощью которого переносится рисунок схемы на кремниевую пластину) и созданы устойчивые для жёсткого излучения бланки для изготовления фотошаблонов.

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Следующим на очереди должен оказаться 5-нм техпроцесс. До запланированного начала выпуска 5-нм решений остаётся примерно два года. Компания TSMC в январе начала строить завод для размещения производственного оборудования под эти нормы производства. Но проблема в том, что до сих пор опытный выпуск 5-нм решений демонстрирует запредельный уровень появления дефектов. Специалисты не раз на это указывали. И одна из главнейших проблем — это отсутствие фоторезиста, способного без искажений перенести на пластину элементы изображения кристалла. Причём дефекты в данном случае образуются случайным образом, и обнаружить их — это вторая большая и, фактически, насущная проблема. На решение этих проблем отводится не больше полутора лет.

Исследования Imec показывают, что производство с нормами 5 нм сопровождается многочисленными дефектами

Исследования Imec показывают, что производство с нормами 5 нм сопровождается многочисленными дефектами

На конференции SPIE Advanced Lithography 2018, которая прошла с 25 февраля по 1 марта, специалист Imec Грег Макинтайр (Greg McIntyre) сообщил, что новейшие EUV-сканеры доказали способность «печатать» элементы с размерами 20 нм и крупнее, которые предусмотрены в рамках 7-нм производства, но дальнейшее уменьшение геометрических размеров элементов под вопросом. Сам Макинтайр верит, что решения для устранения так называемого стохастического (вероятностного) эффекта будут вскоре найдены, но это лишний раз убедило скептиков, что будущее массовой EUV-литографии всё ещё не определено. Всё может быстро закончится, так и не начавшись. Особенно с учётом того, что EUV — это крайне дорогое удовольствие, которое не позволяет рассчитывать на краткосрочный эффект от вложений.

Сводная таблица с размерами элементов в основных «слоях» современных процессоров для 7-нм, 10-нм и 5-нм техпроцессов

Сводная таблица с размерами элементов в основных «слоях» современных процессоров для 7-нм, 10-нм и 5-нм техпроцессов

В процессе поиска «бездефектного» фоторезиста в институте Imec испытали около 350 комбинаций материалов и процессов. Все они показали случайное возникновение дефектов при выполнении элементов с размерами около 15 нм, которые необходимо изготавливать в рамках 5-нм техпроцесса. По мнению ветерана компании Intel Яна Бородовски (Yan Borodovsky), спасти ситуацию может отказоустойчивая архитектура процессоров, которая будет маскировать дефекты в силу особенностей проектирования решений. На такое, например, способны нейронные сети.

Впрочем, маловероятно, что Intel или AMD смогут внести настолько серьёзные изменения в архитектуру процессоров, чтобы воспользоваться преимуществами EUV-литографии. Скорее всего, они дождутся выхода новых EVU-сканеров ASML с улучшенными оптическими характеристиками, что произойдёт с период с 2020 по 2024 годы, или учёные создадут устойчивый к жёсткому излучению фоторезист с необходимыми свойствами.

Источник:

window-new
Soft
Hard
Тренды 🔥