Новости Hardware → нанотехнологии
Главная новость

Трёхмерные чипы памяти – новые конкуренты жёстким дискам

Учёные из Университета Аризоны (Arizona State University) разработали элегантный метод существенного повышения емкости электронных чипов компьютерной памяти. Возглавляемая профессором инженерии электронных систем и директором Центра прикладной наноионики (Center for Applied Nanoionics) Михаэлем Козики (Michael Kozicki) группа сотрудников продемонстрировала "технологию ионной памяти", которая является одним из кандидатов на использование в будущих устройствах хранения информации. Дополнительное преимущество разработки – это отсутствие потребности в экзотических материалах для производственного процесса. Как объясняет Козики, его работа открывает путь к недорогим, ёмким устройствам хранения, что достигается укладкой слоёв памяти друг на друга внутри одного чипа. Методика в конечном итоге позволит размещать в единственной микросхеме столько же данных, сколько способны хранить жёсткие диски. Портативная электроника при этом станет ещё более компактной, стойкой к воздействию нагрузок и будет экономнее расходовать заряд батарей. Технология является усовершенствованным вариантом разработки двухлетней давности, способной заменить флеш-память с использованием материалов, повсеместно применяемых полупроводниковой индустрией. В последних экспериментах исследователи добавили к ячейкам памяти не менее распространённый кремний. Новый чип уже был продемонстрирован на международном симпозиуме по электронным материалам, прошедшем на Тайване. Козики считает, что с текущими технологиями производства индустрия стремительно приближается к физическому пределу для устройств хранения. Это побуждает учёных искать новые технологии, и один из вариантов – укладка слоёв ячеек памяти. Концепцию можно описать по аналогии с коробками в небольшой комнате. Количество таких "ячеек" значительно возрастает для той же площади, если использовать преимущества трёх измерений и располагать коробки также в вертикальной плоскости. Идея довольно проста, и нечто подобное также предлагается для процессоров, где друг на друге должны размещаться вычислительные ядра, образуя многоядерный трёхмерный чип. До сих пор методика для памяти не применялась в связи с невозможностью изолировать накладываемые слои. Каждая ячейка содержит элемент хранения и компоненты, обеспечивающие доступ к нему для чтения и записи. "Ранее при совмещении ячеек памяти вместе невозможно было получить доступ к одной без одновременного затрагивания других, поскольку они имели электрическое соединение. Мы же добавили изоляторы, разделяющие все ячейки, – поясняет Козики. До сих пор компоненты доступа встраивались в кремниевую подложку. – Но если сделать это для одного слоя памяти и затем добавить следующий, негде разместить схемы доступа. Кремний уже использован для первого слоя, получается единственный кристалл". Команда Козики пыталась найти способ встроить изолирующий диод в ячейку памяти. Исследователям удалось достичь цели без обычного для таких случаев включения в состав схемы нескольких слоёв материалов, а лишь заменой одного на другой. Теперь вместо встраивания компонентов доступа для ячеек в подложку они помещаются в располагающиеся друг на друге слои памяти, куда включены разные типы кремния. "Вместо одного транзистора в подложке, контролирующего каждую ячейку, у нас есть ячейка со встроенным диодом для доступа, что и позволяет укладывать столько слоёв памяти, сколько возможно для данной конструкции. Всё решилось устранением нижнего электрода и заменой его кремнием", - говорит Козики. Таким образом, ёмкость памяти существенно увеличивается. По мнению ученого, подобная технология – единственная для полупроводниковой памяти, способная конкурировать с жёсткими дисками в плане стоимости и объёма хранимых данных.

Быстрый переход

Создан первый в мире транзистор из одной молекулы

Команда в составе учёных из Йельского университета (Yale University) и Кванджуйского института наук и технологий (Gwangju Institute of Science and Technology), Южная Корея, успешно создала первый транзистор из единственной молекулы. Исследователи продемонстрировали, что присоединённая к золотым контактам молекула бензола ведёт себя как кремниевый транзистор. Различные энергетические состояния объединения атомов контролируются приложенным к контактам напряжением. В свою очередь, управление состояниями позволило менять проходящий через молекулу ток.
Первый в мире молекулярный транзистор
Как объясняет Марк Рид (Mark Reed), это схоже с перебрасыванием мяча через холм, если принять, что мяч является аналогом электрического тока, а высота холма – энергетических состояний. Учёным удалось регулировать высоту, пропуская ток или останавливая его. Работа базируется на предыдущем исследовании Рида, проводившемся в 1990-е годы, когда была доказана возможность помещения отдельной молекулы между электрическими контактами. С тех пор он совместно с профессором Таки Ли (Takhee Lee) разработал дополнительные техники, позволившие "видеть" происходящее на молекулярном уровне. Ключевым элементами также стали изготовление контактов столь малого масштаба, идентификация идеальных молекул для экспериментов и определение способа их подключения. Молекулы в электронных схемах представляют интерес, поскольку обычные транзисторы подобных размеров пока получить не удаётся. Но Рид подчёркивает чисто научную ценность достижения – практическое применение технологии в виде быстродействующих молекулярных компьютеров, если такое вообще возможно, – это вопрос десятков лет исследований. Тем не менее, огромная часть работы уже сделана и показана принципиальная возможность применения молекул вместе с электроникой. Материалы по теме: - Toshiba представила спинтронный транзистор;
- Intel усовершенствовала транзисторы следующего поколения;
- IT-Байки: Электроника-2020 – жизнь после смерти кремния.

Шестиугольные солнечные микроячейки для одежды-батарейки

Учёные из Национальной лаборатории корпорации Sandia (Sandia National Laboratories) разработали крошечные фотоэлектрические ячейки, которые потенциально могут революционизировать способ сбора и использования солнечной энергии. Например, эти микроскопические ячейки превратят человека в передвижное "зарядное устройство", если их закрепить на гибкой основе, перенесённой на одежду. Изготовленные из кристаллического кремния солнечные частицы помимо многообещающего потенциала должны быть более эффективными и дешевыми, чем существующие ячейки. Производятся новые устройства с использованием микроэлектронных и микроэлектромеханических систем (MEMS).
Шестиугольные ячейки
Возглавляемая Грегом Нильсоном (Greg Nielson) группа исследователей идентифицировала более 20 преимуществ малого масштаба своих микроячеек. Как объясняет Нильсон, в конечном итоге массово выпускаемые фотоэлектрические устройства могут встраиваться в здания, палатки и одежду. Охотники, путешественники и военный персонал получат решения для подзарядки мобильных телефонов, камер и другой электроники, действующие без необходимости развёртывания на местности солнечных панелей с большой площадью. "Фотоэлектрические модули из микроячеек для крыш домов могут иметь интеллектуальный контроль, преобразователи тока и даже устройства хранения энергии, интегрированные на уровне чипа. Такое решение значительно упростит конструкцию, снизит стоимость и процесс установки сетей из солнечных элементов", - говорит инженер лаборатории Випин Гупта (Vipin Gupta). Частично стоимость снижается вследствие относительно небольшого количества материала, требуемого для формирования хорошо контролируемых микроустройств. Толщина новых ячеек составляет 14-20 мкм, а диаметр – от 0,25-1 мм. На изготовление солнечной панели площадью 232 см2 (6" х 6") требуется в 100 раз меньше кремния в случае использования этих микроэлементов по сравнению с обычными кремниевыми панелями. Количество генерируемой энергии при этом такое же, а допустимая механическая нагрузка – больше. Дополнительное преимущество также заключается в возможности производства микроячеек из коммерческих пластин любого размера, в том числе из 300-мм (12") подложек и будущих 450-мм (18"). Более того, если при производстве одна ячейка будет повреждена, это не приведёт к отбраковке всей пластины, тогда как при изготовлении обычных панелей непригодной становится вся подложка. А панели большей чем стандартная (6" х 6") площади из подложек большего размера будут нуждаться в увеличении толщины проводников, поднимая стоимость ещё выше. Этой проблемы не существует с микроячейками и индивидуальной разводкой проводников для них.
Модуль с ячейками и линзами
Лучше переносит разработка и тень. В условиях частичного затенения, где обычная солнечная панель перестанет функционировать, устройство из микроячеек продолжит генерировать электричество. Поскольку гибкую основу достаточно легко получить, высокоэффективные фотоэлектрические преобразователи для широкого использования в повседневных задачах становятся более реальными. Коммерческий шаг к микромасштабным солнечным элементам, как рассчитывают исследователи, станет значительной переменой по сравнению с модулями из массивов 6" панелей. Благодаря распространённым в индустриях MEMS, электроники и LED-диодов технологиям производственный переход будет относительно безболезненным. Например, электрические контакты для каждой ячейки шестиугольной формы, формируемой на кремниевой подложке, получаются с использованием техники производства интегральных схем. В данный момент эффективность преобразования солнечной энергии микроячейками достигает 14,9%. Для присутствующих на рынке коммерческих решений характерен показатель 13-20%. Стандартное производственное оборудование для переноса и установки компонентов (pick-and-place machine), применяемое в массовой сборке электроники, может разместить до 130 тыс. ячеек в час на подготовленных площадках с электрическими контактами, процесс проходит при низкой температуре. Стоимость - $0,001 за один микроэлемент, а их количество в модуле определяется уровнем оптической концентрации и размером кристалла и варьируется от 10 тыс. до 50 тыс. на 1 м2. В разработке находится альтернативная технология самосборки, которая ещё больше снизит стоимость. Солнечные концентраторы – дешёвые массивы микролинз – могут быть помещены непосредственно на каждую ячейку для повышения количества собираемых фотонов. Помимо уже упомянутых прикладных сфер, разработчики видят применение микроячейкам в спутниках и беспроводных сенсорах. Материалы по теме: - Гибкие солнечные ячейки восстановят зрение;
- Солнечные батареи на перчатках и шапке;
- /editorial/it_photocarbon.

Рынок оборудования для выпуска наноматериалов вырастет до $90 млрд

Среднегодовой темп роста индустрии оборудования для производства наноматериалов составит 10,4% в период между 2009 и 2014 гг. По оценке компании Innovative Research and Products, объём рынка к тому времени достигнет $90,4 млрд. Сектор полупроводниковых пластин будет испытывать подъём на 14% ежегодно, и через пять лет достигнет $20,6 млрд. В то же время в течение последних лет оба рынка падали. Продажи пластин составили $12,1 млрд, $11,4 млрд и $10,7 млрд в 2007, 2008 и 2009 гг. соответственно. В следующем же году рост возобновится, и продажи согласно прогнозам увеличатся на 9,3% до $11,7 млрд.
Beneq TFS-500 ALD
В течение трёх последних лет рынок оборудования снижался с $67,9 млрд в 2007 году до $62,1 млрд в 2008 и $55,1 млрд в 2009. В следующем году должен быть зафиксирован рост на 10,7% до $61 млрд. В целом производители полупроводников и электроники потратили около $80 млрд в 2007 г. и $74 млрд в следующем на кремниевые пластины, материалы и оборудование. Установки для размещения материалов на пластинах занимали в 2008 г. 19% долю рынка "нанопроизводственных" продуктов, оцениваемую в $11,4 млрд. Пятая часть поставок принадлежала литографическому оборудованию ($12,4 млрд), излучающим технологиям – 9% рынка и $5,6 млрд, решениям для тестирования компонентов и процессов – 17% и $10,56 млрд. Продажи в метрологическом сегменте составили $6,83 млрд (11% "нанорынка"). Затраты на исследования и разработки для совершенствования технологий производства наноматериалов превысили $7 млрд в год на уровне корпораций. В настоящее время 30-40% стоимости полупроводникового производства – это затраты на литографию, включая маски, резисты и метрологические техники. Цифры зависят преимущественно от количества интегральных схем на один заказ их разработки и возраста производственного оборудования. Материалы по теме: - Первые трёхмерные интегральные схемы из нанотрубок;
- Пружины из нанотрубок избавят человечество от аккумуляторов;
- IT-байки: Графан - сын графена, дедушка электроники будущего.

Источник:

Контактные линзы с наночастицами покажут диабетикам уровень сахара

Страдающие диабетом люди вскоре могут получить технологию, с которой, как надеется разработчик, их жизнь станет легче. Диабетики вынуждены непрерывно контролировать уровень сахара в крови, и обычно это делается путём забора и анализа крови. Профессор в области химической и биохимической инженерии Жин Женг (Jin Zhang) из Университета Западного Онтарио (University of Western Ontario) предлагает инновационное решение проблемы: его "неразрушающая" технология предполагает использование контактных линз, которые в соответствии с изменением уровня глюкозы меняют цвет.
Контактная линза
Ответом на вызов болезни стали наночастицы. Помещённые в линзы из гидрогеля, они взаимодействуют с молекулами глюкозы в появляющихся естественным путём слезах. Химическая реакция вызывает изменение цвета. В детали Женг не вдаётся. Учёный уже получил $216 тыс. от Канадского фонда инноваций (Canada Foundation for Innovation) для дальнейшей работы с многофункциональными нанокомпозитами, потенциал которых простирается далеко за пределы биомедицины. Например, плёнки из них могут предотвратить порчу пищевых продуктов, закрывая доступ кислороду, углекислому газу и влаге к органической материи. Технология также позволяет создать разлагаемую под действием бактерий упаковку. Материалы по теме: - USB-чехол для дезинфекции зубных щеток;
- Электронные контактные линзы – очередной шаг к добавленной реальности;
- Гибкие солнечные ячейки восстановят зрение.

Создана линза нового поколения из метаматериала

Инженеры из Университета Дюка (Duke University) создали новое поколение линз, которые могут значительно повысить возможности телекоммуникационного оборудования и радаров. Однако внешне на линзу разработка совсем не похожа. Она не стеклянная и не прозрачная, а выглядят скорее как жалюзи. Тем не менее, её способность фокусировать электромагнитные волны значительно превосходит традиционные "стёкла". Достижение стало возможным благодаря метаматериалам – комплексным структурам со свойствами, не встречающимися в природе.
Линза из метаматериала
Прототип линзы размером 10,16 х 12,7 х 2,5 см сложен из более чем 1000 сегментов стекловолокна, применяемого в печатных платах. Они расположены с большой точностью в параллельные ряды, которые и направляют лучи. Как рассказывает научный сотрудник в области электротехники и компьютерной инженерии Натан Кандтз (Nathan Kundtz), вместо использования поверхностей для контроля лучей, как в обычных линзах, учёные обратили внимание на внутреннюю структуру. Управление объёмом линзы предоставляет намного большую свободу в адаптации к конкретным задачам. Ранее подобные возможности существовали только на теоретическом уровне. В связи с ограничениями традиционных линз работа над инновационными решениями продолжается достаточно давно и включает линзы с градиентным показателем преломления (gradient index (GRIN) lenses). Эти прозрачные сферы имеют некоторые преимущества, но сложны в изготовлении и дают сферическую картину, что не подходит для большинства ориентированных на два измерения систем. Новая разработка имеет широкое поле зрения – почти 180°, а поскольку фокус плоский, она поддерживает существующие технологии. Последние эксперименты проведены с микроволнами, далее исследователи надеются создать линзы для более широкого диапазона – инфракрасных и оптических частот. По словам учёных, одна линза из метаматериала может заменить оптическую систему из массива фокусирующих элементов. Материалы по теме: - Учёные поймали радугу;
- Фотонная временная линза обеспечит связь на 270 Гбит/с;
- IT-байки: О невидимости, с фокусами и без.

Цифровые квантовые батареи – "квантовый прыжок" в хранении энергии

Исследователями из Университета Иллинойса (University of Illinois) предложена концепция так называемых цифровых квантовых батарей, которые должны обладать во много раз большей ёмкостью, чем сегодняшние аккумуляторы. Идея предполагает использование миллиардов конденсаторов наномасштабных размеров и основана на квантовых эффектах, проявляющихся на уровне атомов. Обычные простейшие конденсаторы состоят из пары проводящих пластин, или электродов, разделённых изолирующим слоем материала или воздуха. Прикладывая к ним напряжение, можно создать электрическое поле и позволить заряду накопиться на обкладке. Но возможности конденсатора не бесконечны – по достижении определённой величины заряда возникают такие эффекты, как "искры" между обкладками и утечки, а при некотором уровне напряжённости поля возможен электрический пробой, и весь заряд теряется. Учёные предлагают создать наномассивы конденсаторов, расстояние между электродами которых должно составлять около 10 нм (или 100 атомов). При этом действующие в таком масштабе квантовые эффекты будут сдерживать увеличение концентрации свободных носителей заряда и соответственно утечки. Данное явление нельзя назвать открытием – в течение многих лет о проявлении необычных свойств наноконденсаторами было известно, и причиной предотвращения потери энергии, свойственной для макромира, назывался именно масштаб элементов. Однако, как считает один из авторов концепции Альфред Хаблер (Alfred Hubler) из Университета Иллинойса, "люди не осознавали, что большое значение электрического поля означает большую плотность энергии, и оно может быть использовано для устройств хранения энергии, которые намного превосходят всё существующее сегодня".
Сравнение объёмной и весовой энергетической ёмкости
Согласно подсчётам Хаблера, итоговая удельная мощность может на порядки превышать любую из применяемых ныне технологий, а количество хранимой энергии – быть в 2-10 раз выше по сравнению с лучшими литий-ионными аккумуляторами. Более того, для производства цифровых квантовых батарей не понадобится модификация используемого в настоящее время литографического процесса, а необходимые материалы – кремний, железо и вольфрам – относительно дёшевы и нетоксичны. Лабораторный прототип Хаблер надеется изготовить уже через год, и устройства либо вовсе не будут терять энергию, либо потери окажутся совсем незначительны при поглощении и высвобождении ими электронов. Но сейчас предлагаемый тип источников питания – это только запатентованная идея. Учёный получил финансирование своих исследований от DARPA (Defense Advanced Research Projects Agency - Агентство передовых оборонных исследовательских проектов), и теперь предстоит доказать их результативность на практике и ответить критикам.
Наноконденсаторы
Схематическое изображение четырёх наноконденсаторов. Катод - прочный проводящий материал, такой как вольфрам или сталь. Анод - нанотрубка в плоской стальной части электрода. Кривые линии отображают линии электрического поля. Изолирующие стенки из оксида кремния
Например, профессор Джоель Шиндел (Joel Schindall) из Массачусетского технологического института (MIT) вообще не уверен, что наноматериалы не разрушатся после накопления заряда. Хотя он признаёт концепцию заслуживающей внимания: "Я заинтригован, потому как у него есть обоснованные аргументы в пользу того, что для таких квантовых размеров эффект накопления энергии по меньшей мере может быть значителен". В некотором смысле концепция представляет собой вариант существующих микро- и наноэлектронных устройств. Как говорит Хаблер, "если посмотреть на это с точки зрения цифровой электроники – это всего лишь флеш-диск". Другой аналог – миниатюрные вакуумные трубки, как в плазменных ТВ. Физики же видят сеть из конденсаторов. "Цифровая" часть следует из факта, что каждый элемент будет адресуем независимо. Поэтому помимо "голой" энергии теоретически возможно хранить данные. Существуют и другие способы повышения характеристик конденсаторов. Так, ультраконденсаторы благодаря увеличению площади поверхности электродов и электролитам способны функционировать быстрее обычных ёмкостей. Шиндел повысил этот параметр и количество хранимого заряда использованием нанотрубок вместо угля на поверхностях электродов в уже созданном прототипе. И хотя Хаблер ещё не достиг практической фазы своей работы, он ссылается на проведенное в 2005 году исследование корейских учёных, показавшее реальность изготовления наноконденсаторов. Материалы по теме: - Новым батареям для ноутбуков от Panasonic не страшны замыкания;
- Атомная энергия для электроники кибержуков;
- Чернила с нанотрубками превращают бумагу в суперконденсатор.

Гибкие солнечные ячейки восстановят зрение

Возрастные изменения, такие как дегенерация жёлтого пятна, связаны с неправильной работой фоторецепторов. Но поскольку остальные части глаза выполняют свои функции, возможно вернуть способность видеть при помощи устройства, выступающего как слой фоторецепторов. По словам Ростема Диниари (Rostam Dinyari) из Стэнфордского университета (Stanford University) в Калифорнии, это достигается путём искусственного конвертирования света в электрические импульсы – почти так же, как действует солнечная ячейка.
Дегенерация жёлтого пятна поражает центральную часть сетчатки
Но большинство фотоэлектрических преобразователей – это твёрдые элементы, которые далеки от обладания идеальными характеристиками для использования внутри глаз. "Если вы пользуетесь линзами, фокальная плоскость всегда изогнута, и лучшая картинка формируется на сферической поверхности", - объясняет Диниари. Поэтому сетчатка не плоская. Используя жёсткие чипы, потребуется большое количество микроскопических имплантатов, чтобы сымитировать живую ткань. Гибкий материал был бы гораздо практичнее – он устраняет необходимость проведения множества операционных вмешательств, позволяя обойтись одним. Хотя многие компании разрабатывают именно твёрдые имплантаты, Диниари последовал иной концепции. Изготовить гибкое устройство получилось путём формирования глубоких каналов в кремнии между соседними солнечными ячейками-пикселями, имеющими диаметр всего 115 мкм. Имплантат помещается поверх самого повреждённого участка сетчатки. Вмонтированная в очки камера будет снимать видео, конвертировать его в сигналы близкого инфракрасного диапазона и проецировать прямо на имплантат. Под действием падающего на них излучения ячейки преобразуют изображение в электрические импульсы и передают через оптический нерв к мозгу. Используется ИК-спектр, поскольку это излучение не взаимодействует с неповреждёнными фоторецепторами, продолжающими функционировать в нормальном режиме. Учёные надеются для начала испытать новые имплантаты на свиньях, прежде чем проводить тестирование на реальных пациентах. Материалы по теме: - Зрение восстанавливают радиацией;
- Придуман способ рисовать глазами;
- Создан глазной имплантат более безопасной конструкции.

Источник:

Новые достижения: 40-мкм карта мира и 16-нм чипы

Тайваньские учёные создали микроскопические чипы, которые могут лечь в основу более лёгкой и дешёвой электроники – портативных компьютеров, мобильных телефонов, плееров. Согласно заявлению Национальной лаборатории наноустройств (National Nano Device Laboratories) в Хсинчу, её исследователи достигли успеха в размещении большего количества транзисторов на меньшей площади кристалла, чем в любой из существующих разработок.
Электронный снимок чипа
Сегодня лишь изредка встречаются ноутбуки с массой менее 1,5 кг, однако новая технология, по словам возглавляющего лабораторию Янга Фу-лианга (Yang Fu-liang), может снизить её втрое. Аналитик издания Digitimes Нобунага Чеи (Nobunaga Chai) назвал достижение "самой продвинутой технологией чипов". Янг со своей командой работает над 16-нм техпроцессом, относящимся к пространству между транзисторами на кристалле. Чем оно меньше, тем выше плотность размещения элементов. Для сравнения: в среднем длина ногтевой фаланги человека составляет 25 млн нм, или 25 мм. 16 нм – это огромный вызов для учёных и рассматривается как "последний рубеж".
Карта мира
Другое достижение в миниатюризации продемонстрировали исследователи из Университета Гента (Ghent University) в Бельгии, которые разместили крошечную карту мира – её масштаб равен 1 к 1 трлн – на оптическом кремниевом чипе. Окружность Земли на экваторе (40000 км) была уменьшена до 40 мкм, или до половины толщины волоса человека. Карта поместилась в углу чипа, созданного в рамках проекта для Группы исследований фотоники (Photonics Research Group) при университете. Идея состояла в демонстрации возможности масштабного уменьшения комплексных оптических компонентов. Подобные чипы могут найти применение в телекоммуникациях, высокопроизводительных вычислениях, биотехнологиях и здравоохранении.
Чип с картой мира
Самые мелкие детали на карте имеют размер около 100 нм. Её создание включало 30 производственных этапов и четыре разных слоя с различной толщиной. Технологии кремниевой фотоники – это развивающаяся область исследований, объединяющая оптические схемы в небольших чипах. Манипуляции со светом производятся в субмикрометровом масштабе в крошечных фотонных проводниках, или волноводах. Такие кремниевые микросхемы могут содержать в миллионы раз больше компонентов по сравнению с использованием традиционной "стеклянной" фотоники. Материалы по теме: - IBM: 11 нм не предел для кремниевых чипов;
- Tilera собирается выпустить стоядерные процессоры;
- 48-ядерный процессор Intel: чип вместо ЦОД.

Первые трёхмерные интегральные схемы из нанотрубок

Исследователи из Стэнфордского университета (Stanford University) создали первые трёхмерные электронные схемы из нанотрубок. Данное достижение может стать важнейшим шагом на пути к компьютерам с вычислительными элементами на основе нанотрубок, обладающим превосходящим сегодняшнюю "кремниевую" технику быстродействием и потребляющим меньше энергии. До их появления должно пройти ещё не менее 10 лет, но значительность результата стэнфордских учёных в том, что показана принципиальная возможность "послойного" размещения наноэлементов из углерода. Подобные чипы будут иметь большую вычислительную мощность на единицу площади и лучше рассеивать тепло.
Элемент памяти из нанотрубок
Недавнее исследование компании IBM показало, что для некоторого количества потребляемой мощности электроника из нанотрубок функционирует в пять раз быстрее, чем кремниевая. "Мы можем и дальше уменьшать размеры транзисторов, но в очень малых масштабах они прекращают показывать желаемые характеристики, - говорит управляющий углеродными технологиями в IBM Watson Research Center Жионг Чен (Zhihong Chen). – Поэтому мы ищем альтернативные материалы, размеры элементов из которых можно уменьшать более агрессивно с сохранением быстродействия". Исследователи уже достигли некоторого успеха в изготовлении единичных транзисторов из нанотрубок в лабораториях, однако до сих пор комплексные цепи из них получать не удавалось вследствие невозможности контроля качества каждой отдельной нанотрубки. Стэнфордская разработка, представленная на прошедшей международной конференции International Electron Devices Meeting (IEDM) 2009 в Балтиморе, открывает возможность создания сложных структур несмотря на ограничения материалов. Как рассказывает профессор электронной инженерии Филип Вонг (Philip Wong), работа со множеством элементов в наномасштабе означает возникновение сложностей с формированием идеальных структур. Вырастив массив нанотрубок для дальнейшего создания из них электрических схем, исследователи получили смесь из полупроводниковых металлических трубок, которая имела тенденцию к коротким замыканиям. Некоторые из нанотрубок были объединены в прямые линии, другие же имели вид изогнутых форм, и это в том числе являлось препятствием. Пока химики занимаются методами выращивания исключительно прямых структур без примесей, команда Вонга поставила себе задачу ответить на вопрос, каким образом можно обойти проблему или смягчить оказываемый ею эффект.
Нанотрубки на кварце
Ответ заключается в конструкции схем. Необходимо вместо удаления металлических нанотрубок учесть их присутствие и разрабатывать соответствующий дизайн электронных цепей. Для начала учёные создают пустую разметку, и при помощи матрицы переносят выровненный однослойный массив углеродных нанотрубок, выращенных на кварцевой подложке, на кремниевую пластину. Над массивом помещаются металлические электроды. Между нанотрубками и кремнием находится выступающий тыловым затвором изолирующий слой, который позволяет прекратить подачу питания на полупроводниковые трубки перед использованием электродов для сжигания металлических нанотрубок разрядом электричества. Верхний затвор располагается так, чтобы не контактировать с выбивающимися из общей ровной структуры трубками. Наконец, металлические электроды удаляются как излишний компонент. Трёхмерная схема получается простым повторением процесса. Такое "штампование" является ключевым в создании многослойной структуры, потому что производится при низких температурах без повреждения металлических электрических контактов. По словам возглавляющего технологическую микропроцессорную лабораторию Intel Шекара Боркара (Shekhar Borkar), пока стэнфордская команда продемонстрировала небольшие и простые схемы наподобие кремниевых 1960-х годов. Например, был изготовлен "калькулятор", способный складывать и хранить числа. В настоящий момент учёные пытаются получить более сложные решения. Углеродные нанотрубки не ставят на этом пути фундаментальные барьеры. Их массивы в лабораториях исследователей одни из самых плотных, с 5-10 трубками на микрометр, но и этого пока недостаточно – требуемая цифра на порядок больше. Материалы по теме: - Первая нить из нитрид-борных нанотрубок;
- Тонкоплёночные транзисторы дисплеев переходят на нанотрубки;
- Сверхдлинные нанотрубки – будущее передающих линий.

window-new
Soft
Hard
Тренды 🔥