Новости Hardware

Для миниатюрных летающих дронов предложен новый тип крыла

Летающие дроны могут массово войти в нашу повседневную жизнь только в том случае, если они будут маленькими и недорогими. Помешать этому может только одно ― сильнейшая восприимчивость к порывам ветра и к турбулентности вокруг препятствий. Что с этим делать? Снова подсмотреть ответ у природы.

Science Robotics

Science Robotics

На этой неделе исследователи из Университета Брауна и Федеральной политехнической школы Лозанны (EPFL) опубликовали в журнале Science Robotics статью, в которой рассказали о разработке и испытании новой конструкции крыла (статья на английском языке полностью доступна по этой ссылке). На этом крыле 100-граммовый прототип малого воздушного беспилотного аппарата может летать почти 3 часа, что в четыре раза дольше времени полёта аналогичных по массогабаритным характеристикам дронов с обычными крыльями.

Конструкция чудесного крыла подсмотрена учёными у насекомых и маленьких птиц. Эта категория летунов не может похвастаться размахом крыльев и, тем не менее, они не боятся ветра, турбулентности и летают предельно эффективно для своих размеров.

При ровном горизонтальном полёте подъёмная сила возникает на так называемом ламинарном потоке воздуха. Для этого профиль крыла должен быть обтекаемым и гладким, чтобы не возник срыв потока и турбулентность. Турбулентность над крылом ― это срыв потока, штопор и обломки на земле. Но у насекомых и маленьких птиц, как выяснилось, профиль крыльев специально создаёт турбулентность, что позволяет им спокойно переносить внешнюю турбулентность при пролёте рядом с землёй, объектами или в ветреную погоду.

Science Robotics

Science Robotics

Спроектированное для малых дронов крыло имеет квадратную кромку ― именно она создаёт турбулентность над первой половиной крыла. Дальше благодаря закрылкам поток воздуха выравнивается и создаёт подъёмную силу. Это не даёт аппарату сорваться. За счёт широкого крыла на нём можно разместить аккумуляторы и управляющую электронику, что делает ненужным фюзеляж. Продолжение крыла за несущим винтом (на месте бывшего фюзеляжа) создаёт дополнительные 20–30 % подъёмной силы, а это не шутка для такого аппарата.

Почему никто раньше не предложил такое крыло? Исследователи считают, что современные инструменты моделирования не могут хорошо справиться со сложной аэродинамикой крыла со срывом потока. Оптимизировать дизайн оказалось сложно даже во время испытаний в аэродинамической трубе. Тем не менее, полученный результат раскрывает потенциал для стабильного полёта небольших беспилотных аппаратов даже в условиях турбулентности с массой полезной нагрузки на широких крыльях.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме
Прежде чем оставить комментарий, пожалуйста, ознакомьтесь с правилами комментирования. Оставляя комментарий, вы подтверждаете ваше согласие с данными правилами и осознаете возможную ответственность за их нарушение.
Все комментарии премодерируются.
Комментарии загружаются...
window-new
Soft
Hard
Тренды 🔥
Первые пользователи Pixel 6 жалуются зелёный оттенок экрана и мерцания 2 ч.
Samsung увеличит мощности для контрактного производства чипов в три раза к 2026 году 2 ч.
Xiaomi представила смарт-часы Redmi Watch 2 — дисплей AMOLED, GPS и NFC всего за $65 3 ч.
Volvo показала прототип автономного электрического погрузчика LX03, который был вдохновлён моделью LEGO 4 ч.
HP представила игровой 27-дюймовый изогнутый монитор Omen 27c с разрешением 1440р и частотой 240 Гц 4 ч.
Intel Core i9-12900K разогнали до 6,8 ГГц и установили несколько мировых рекордов в бенчмарках 4 ч.
GS Group начала серийное производство микросхем в Калининградской области 4 ч.
Электромобили Tesla теперь могут транслировать видео со встроенных камер на смартфон владельца 4 ч.
ASUS анонсировала игровой 27-дюймовый монитор ROG Strix XG276Q с разрешением Full HD и частотой 165 Гц 5 ч.
Raspberry Pi представила крошечный компьютер Zero 2 W с четырёхъядерным чипом за $15 5 ч.