Новости Hardware → нанотехнологии
Главная новость

Samsung первой начала выпускать память DRAM с использованием сканеров EUV: отгружен первый миллион модулей

Samsung первой начала выпускать память DRAM с использованием сканеров EUV: отгружен первый миллион модулей

Компания Samsung Electronics сообщила о преодолении знаковой вехи. Клиенты компании получили в своё распоряжение один миллион модулей памяти DDR4 на первых в мире кристаллах памяти, для выпуска которых использовались сканеры диапазона EUV. Все они прошли комплексное тестирование и рекомендованы для установки в ПК премиального уровня и в серверы.

Согласно устоявшейся традиции, Samsung не раскрывает точные нормы производства чипов памяти в новом поколении. Кодовое обозначение данного техпроцесса ― D1x. Отметим, сканеры EUV с длиной волны 13,5 нм используются только для небольшой части производственных операций. Полностью перевести выпуск памяти поколения D1x на проекцию со сверхжёстким излучением компания планирует в следующем году. Такая память получит обозначение D1a.

Быстрый переход

Полупроводники смогли удивить: они могут вести себя как металлы и как сверхпроводники

Международная группа учёных обнаружила новое свойство полупроводников. Оказалось, что один и тот же материал, но с несколько отличающейся атомарной структурой, обнаруживает фундаментально различные свойства. Это открытие заставит по-новому взглянуть на материалы для электронной промышленности. Может так статься, что мы, фигурально выражаясь, до сих пор забивали гвозди микроскопом.

На левом изображении слева проволока из полупроводника, а справа Z-образная прволока с металлическими свойствами. На правом изображении эта же нанопроволока между золотыми контактами.

На левом изображении слева проволока из полупроводника, а справа Z-образная проволока с металлическими свойствами. На правом изображении эта же нанопроволока между золотыми контактами.

Учёные из британского Университета Суонси и немецкого Университета Ростока провели глубокий анализ кристаллической структуры на поверхности полупроводниковых материалов. С помощью так называемого коллоидного синтеза учёные смогли получить из полупроводника сульфида свинца две по-разному упорядоченные структуры.

В обычных условиях оба типа атомов в материале равномерно смешаны, что позволяет сульфиду свинца быть полупроводником со всеми вытекающими свойствами. Но после специальной обработки взвеси материала в жидком растворе атомы свинца выстроились вдоль всей поверхности полученной таким образом нанопроволоки. Новая структура стала проводить существенно больше электрического тока, как это свойственно металлу, и показала обратную зависимость от температуры, что также характерно для металлов. Полупроводниковых свойств она не продемонстрировала.

Более того, после охлаждения нанопроволоки до криогенных температур она стала вести себя как сверхпроводник. Иначе говоря, её сопротивление электрическому току резко упало. Данное открытие позволяет надеяться, что в других популярных материалах также кроется возможность фундаментально менять свои свойства при определённой несложной обработке. А раз есть тайные возможности, то это даёт надежду на прорыв там, где не этого давно не ждали.

Источник:

Китайские учёные для охлаждения процессоров предлагают научить их потеть

Фраза «над этой задачей вашему процессору придётся попотеть» может потерять иносказательное выражение и оказаться буквальной в своём высказывании. Представляется шуткой? Отнюдь. Современные знания о нанопористых материалах позволяют создавать пассивные радиаторы с эффективным отводом тепла при испарении воды.

Согласно идее ученых из Шанхайского университета Джао Тонг в Китае, если млекопитающие научились эффективно охлаждать себя в процессе испарения воды кожным покровом, то почему бы не охлаждать испарением электронику? В серии экспериментов с нанопористыми материалами покрытия выяснилось, что предложенный метод отлично проявил себя в небольших формфакторах, где оказался эффективнее активных систем охлаждения с вентиляторами.

За основу материала для «потеющего» покрытия учёные взяли так называемую металл-органическую каркасную структуру (MOF). Это решётчатая структура с порами от нескольких нанометров. Опытный материал на основе хрома получил название MIL-101. В ходе проверки концепции материал MIL-101 нанесли тончайшим слоем на металлическую подложку. Этот пористый слой толщиной всего 1 мкм за 25 минут охладил подложку на 8,6 °C при нагреве мощностью 1,5 Вт.

Важно отметить, что «потеющий» радиатор не требует для своей работы резервуара с запасом воды. Всю необходимую для работы влагу он вбирает в себя из окружающего воздуха во время простоя (при отсутствии нагрева и испарения). И чем больше пор или чем толще покрытие (до разумных пределов), тем интенсивнее происходит испарение и отвод тепла.

Современные системы пассивного отвода тепла от электроники часто используют рассеивание на эффекте фазового перехода состояния вещества. Вещества на основе или подобные воску при нагреве плавятся и поглощают энергию. По сравнению с этой технологией, часто использующейся в аэрокосмической технике, предложенный метод испарения влаги пористым покрытием действует в 10 раз эффективнее.

Другой важной областью применения «потеющих» материалов представляется мягкая или гибкая робототехника. Вместо громоздких систем отвода тепла с помощью вентиляторов, которые в ряде случаев просто невозможно будет установить, потеющая поверхность корпуса станет простым ответом на вопрос, как охладить робота.

Источник:

В Стэнфорде сделали литиево-ионную батарею, которая работает даже в огне

Множество учёных и исследователей работают над усовершенствованием литиево-ионных аккумуляторов. Ёмкость этих накопителей энергии всё ещё не достигла теоретического максимума, кроме того остаётся и опасность возгорания аккумуляторов в процессе использования. Учёные из Стэнфордского университета сделали открытие, которое поможет обезопасить эксплуатацию батарей на основе лития.

Как мы не раз сообщали, главной опасностью для современных литиево-ионных аккумуляторов остаётся риск короткого замыкания. Это случается, когда на литийсодержащих электродах в процессе заряда и разряда начинают расти игольчатые кристаллы дендриты. Особенно разросшийся кристалл может проткнуть разделительную плёнку в электролите (сепаратор) и вызвать лавинообразный рост тока с последующим возгоранием и даже взрывом.

Предотвратить рост дендритов может твёрдый электролит. Поэтому сейчас направление по разработке литиево-ионных аккумуляторов с твёрдым электролитом одно из самых популярных среди исследователей. Учёные из Стэнфорда тоже пошли по этому пути. Более того, они попытались сделать состав электролита максимально устойчивым к возгоранию и преуспели в этом. Твёрдые электролиты, ведь, тоже при определённых условиях могут воспламениться.

В статье, опубликованной в прошлом месяце в Nano Letters, команда учёных рассказала, как они создали новый «огнеупорный» твердотельный электролит (SSE) для использования в литий-ионных батареях. Для этого в состав электролита был добавлен огнеупорный материал декабромдифенилэтан (DBDPE). Но не просто в виде наполнителя, а в сочетании с полиимидом, придающим электролитному слою механическую прочность. А прочность ему нужна. Толщина твёрдого электролита составляет всего от 10 до 25 мкм. Кроме того, полиимид дёшев и имеет высокую температуру плавления.

Но тут же пришлось решать другую задачу. Полиимид не проводит ионы. И чтобы электролит справлялся со своей задачей, к DBDPE с полиимидом были добавлены ещё два разных полимера: полиэтиленоксид (PEO) и бистрифторметансульфонилимид лития (LiTFSI).

Получившийся в итоге электролит позволил сделать литиево-ионный аккумулятор с хорошей удельной ёмкостью 131 мА·ч/г для рейтинга 1C (с разрядом номинальным током в течение одного часа) и с хорошим показателем цикличности на уровне 300 циклов с длительностью разряда 2 часа в цикле (с рейтингом С/2) при температуре 60 °C. Температура, отметим, немаленькая для литиево-ионного аккумулятора. Но больше всего учёные поразились, когда они подожгли аккумулятор. Он не только не взорвался, но продолжал ещё какое-то время работать и питать нагрузку в виде светодиода.

В дальнейшем учёные намерены работать над увеличением ёмкости аккумуляторов на новом электролите и улучшать другие его потребительские качества.

Источник:

Samsung приступила к закупкам оборудования для линии производства 5-нм чипов

Через 10 лет компания Samsung Electronics собирается стать мировым лидером производства полупроводников. Сегодня доля Samsung на рынке контрактного производства примерно равна 10 %, а настоящий лидер ― компания TSMC ― удерживает 50 % этого рынка. Очевидно, что Samsung необходимо активно увеличивать инвестиции в производство чипов и при этом не скупиться.

Новый завод V1 компаниb Samsung

Новый завод V1 компании Samsung

По сообщению южнокорейского информагентства The Electronic Times, Samsung приступила к финансированию развёртывания линии по производству полупроводников с технологическими нормами 5 нм. Это выразилось в размещении заказов на производственное оборудование и оборудование для расширения инфраструктуры завода. Новая линия будет развёрнута на новейшем заводе V1 компании в городе Хвасон. Это предприятие начало массовый выпуск 7-нм продукции в конце февраля или в начале марта.

Всё необходимое для выпуска 5-нм решений оборудование должно быть установлено к концу июля. Правда, затем последует обычно длительный период тестирования и наладки производства, чтобы минимизировать уровень возможного брака. Тем самым 5-нм линия заработает на полную мощность ближе к концу текущего года или в начале следующего года.

У компании Samsung уже есть несколько заказов от клиентов на 5-нм чипы. Правда, достоверно известно только об одном таком клиенте ― это компания Qualcomm, для которой Samsung будет выпускать 5-нм модемы Snapdragon X60. В этом плане TSMC опережает конкурента и начнёт коммерческий выпуск 5-нм продукции уже в следующем квартале.

Следующий виток схватки ― это производство 3-нм продукции. Массовые инвестиции в 3-нм производственное оборудование Samsung начнёт в 2021 году, чтобы уже в 2022 году начать коммерческий выпуск 3-нм полупроводников. Компания TSMC также рассчитывает начать коммерческий выпуск 3-нм чипов в 2022 году.

Источник:

Органика вместо кобальта: канадцы задумали обезопасить литиево-ионные батареи

Исследователи из Йоркского университета в Торонто подошли на шаг ближе к созданию органических батарей. В перспективе учёные мечтают об экологически чистых аккумуляторах без дефицитных и опасных для человека и природы металлов. Мощность и ёмкость аккумуляторов при этом не должны пострадать, а может, даже станут лучше.

Команда профессора Томаса Баумгартнера (Thomas Baumgartner) с Факультета науки Йоркского университета создала органическую молекулу, которая призвана заменить кобальт в литиево-ионных аккумуляторах. Точнее, заменить этот редкий и токсичный тяжёлый металл в составе анода и катода батарей. Переход на органику кроме экологической чистоты сулит неограниченный поток сырья для изготовления аккумуляторов, тогда как запасы кобальта на Земле ограничены.

«Органические электродные материалы считаются чрезвычайно перспективными материалами для устойчивых аккумуляторов с высокими энергетическими возможностями», — заявляют исследователи.

Недавним прорывом в исследованиях стало создание новой органической молекулы на основе углерода. Новый материал устраняет недостатки неорганического материала с сохранением производительности. Напряжение экспериментального элемента с органикой в электродах вместо кобальта достигало 3,5 В, что соответствует рабочему диапазону обычных «металлических» литиево-ионных элементов. Количество циклов заряда и разряда опытного элемента тоже хорошее и может преодолевать уровень в 500 циклов.

Ещё одним достоинством литиево-ионных аккумуляторов из органических материалов стало то, что они почти не нагреваются в процессе даже очень интенсивной зарядки. Элементы с металлами в анодах и катодах в таких условиях быстро разогреваются и могут нести угрозу возгорания, как и ограничивают токи заряда и разряда. Органические элементы устраняют эти ограничения, а значит, смогут эксплуатироваться на повышенных мощностях и быстрее заряжаться.

Данные об исследовании удостоились чести быть проиллюстрированными на мартовской обложке журнала Batteries & Supercaps. Ранее об исследовании сообщалось в журнале Advanced Energy Materials. На следующем этапе канадские учёные попытаются создать ещё более эффективную органическую молекулу для более мощных и ёмких аккумуляторов.

Источник:

Физики из Цюриха создали локальную сеть для квантового компьютера

Громоздкие криогенные системы современных квантовых компьютеров по определению не могут вместить сотни и больше кубитов. Слишком уж большой получится система ― размерами с комнату или даже дом. Выходом может стать создание кластеров. Осталось решить задачу сетевого соединения систем в кластере с сохранением квантовой запутанности. Для этого физики из Цюриха смогли создать опытную квантовую локальную вычислительную сеть.

ETH Zurich

ETH Zurich

Группа физиков из Высшей технической школы Цюриха (ETH Zurich) продемонстрировала микроволновую квантовую линию длиной пять метров. Это самая длинная в своем роде линия на сегодняшний день. Она может быть использована как для будущих квантовых компьютерных сетей, так и для экспериментов в области фундаментальных исследований квантовой физики.

Микроволновая линия представляет собой металлический волновод между двумя квантовыми процессорами. Как и квантовые процессоры, волновод охлаждён жидким гелием до температуры –273,15 °C. От внешней среды волновод отделён многослойным медным кожухом, вес которого составляет четверть тонны. Это позволяет держать температуру на необходимом нижнем уровне. Столь низкие температуры нужны для того, чтобы устранить тепловые возмущения, которые нарушают состояние суперпозиции квантов и ведут к ошибкам в расчётах.

Линия связи между квантовыми процессорами необходима для обмена состояниями суперпозиции между ними или для создания запутанности, чтобы квантовый кластер работал как единый квантовый вычислитель. Запутанность осуществляется с помощью фотонов микроволнового излучения. Генератор в одной системе испускает фотон, тот преодолевает дистанцию через волновод и принимается второй системой. Опыты с 5-метровой микроволновой линией показали, что в процессе передачи фотонов кубиты в связанных системах подвергались минимальной декогеренции (рассогласованию).

ETH Zurich

ETH Zurich

Параллельно физики создали 10-метровую и планируют создать 30-метровую линию квантовой связи. Линия длиной 10 метров уже создана и проверена охлаждением, но опыты на ней пока не ставились. Линия длиной 30 метров будут создана позже. Если будет реализована та же конструкция теплоизолирующего кожуха, то для неё понадобится полторы тонны меди. Очевидно, что над схемой теплоизоляции ещё предстоит поработать.

Источник:

Бельгийская разработка обещает недорогую кремниевую фотонику

Полупроводниковые источники и приёмники света уже зарекомендовали себя как незаменимые решения для транспортировки данных по оптоволоконным каналам связи. Но всё это достигается за счёт сравнительно дорогих дискретных компонентов. Для использования оптики в интегральных схемах и для снижения цен на кремниевую фотонику необходима интеграция лазеров в микросхемы. Одной из таких технологий обещает стать разработка бельгийского центра Imec.

Принцип работы полупрводниковго лазера с распределённой обратной связью (изображение Роснано)

Принцип работы полупроводникового лазера с распределённой обратной связью (изображение Роснано)

Центр исследований Imec и британская компания CST Global, которая специализируется на производстве химических соединений из III–V групп таблицы Менделеева, сообщили об успешной интеграции лазеров с распределенной обратной связью (DFB) на основе фосфата индия (InP) в производственную платформу Imec iSiPP (интегрированная платформа кремниевой фотоники). За основу производственной технологии взята платформа InP100 компании CST Global. Проще говоря, Imec воспользовалась наработками CST Global в области создания лазеров на базе фосфата индия и подготовила техпроцесс для промышленного производства интегрированных решений.

В течение 2020 года бельгийские разработчики будут оптимизировать вновь созданный техпроцесс и проверять его со всех возможных сторон. Для клиентов центра техпроцесс в рамках создания опытных прототипов интегрированных полупроводниковых лазеров станет доступным в первой половине 2021 года. Ожидается, что удешевления производства встроенных в микросхемы лазеров приведёт к появлению кремниевой фотоники в сферах, где высокие расходы неприемлемы. Например, для оптической связи чипов друг с другом в компьютерах и даже смартфонах, в датчиках и в других устройствах и приборах.

Гибридный интегрированный лазер Imec

Гибридный интегрированный лазер Imec

Традиционно источники света на основе материалов III–V групп, например, фосфида индия (InP) или арсенида галлия (GaAs), изготавливаются как отдельные дискретные компоненты. Это дороже, они больше и их работа сопровождается потерями. Партнёры в лице Imec и CST Global смогли создать техпроцесс, при котором дискретный компонент лазера InP устанавливается на кремниевую подложку с волноводами. Технология обеспечивает высокую точность совмещения элементов и надёжные связи кристалла лазера с кристаллом подложкой.

Опытный чип, например (см. на картинке выше), представляет собой гибридное решение с мощностью излучения свыше 5 мВт. Это отличный показатель и, очевидно, он будет только улучшаться по мере совершенствования технологии.

Источник:

TSMC и Broadcom представили чип с подложкой-мостом с вдвое увеличенной площадью

Как всем известно, дальше закон Мура будет развиваться за счёт комплексного усложнения чипов. Это проявится в создании многокристальных упаковок, в которых чипы будут располагаться как на одном горизонте, так и в столбик друг над другом. Одной из таких технологий с горизонтальной компоновкой чипов на общей подложке является технология TSMC CoWoS. C этого года TSMC готова удвоить площадь подложки и умножить число кристаллов на ней.

Экспериментальный интерпозер площадью 1800 мм2. В серию пойдёт мост менгшей площади порядка 1700 мм2.

Экспериментальный интерпозер площадью 1800 мм2. В серию пойдёт мост меньшей площади порядка 1700 мм2.

Компания TSMC сообщила, что она совместно с проектировщиком SoC, компанией Broadcom, улучшила платформу многокристальной упаковки CoWoS (chip-on-wafer-on-substrate). Предыдущее поколение технологии позволяло создавать кремниевую подложку-мост или интерпозер площадью не более 800 мм2. Новое поколение CoWoS сможет оперировать подложками площадью около 1700 мм2.

Как сообщили в TSMC, подложка CoWoS по улучшенной технологии сможет разместить одновременно несколько логических однокристальных схем и до 6 чипов памяти HBM. Тем самым формально одна микросхема может быть вооружена памятью HBM объёмом до 96 Гбайт и получит пропускную способность до 2,7 Тбайт/с или в 2,7 раза выше, чем позволяла упаковка CoWoS образца 2016 года.

Для чего будут создаваться настолько большие составные чипы? В первую очередь они будут нужны для систем машинного обучения и для анализа больших массивов информации. Близкое расположение памяти к SoC обеспечит скорость работы и энергоэффективность, тем более, что TSMC рассчитывает использовать подложку увеличенной площади для интеграции на неё 7-нм и 5-нм чипов.

Что за чип создали TSMC и Broadcom с использованием увеличенной в размерах площадки, не сообщается. Но не скрывается, что память и SoC были предоставлены Broadcom. Вкладом TSMC в общее дело стало изготовление интерпозера с помощью новой технологии склейки фотомасок для бесшовного изготовления площадки увеличенного размера.

Источник:

Российские и китайские учёные нащупывают путь к «комнатной» сверхпроводимости

Эффект сверхпроводимости сулит качественно иную передачу электроэнергии, когда практически не будет потерь от транспортировки по сетям передачи. Препятствием на этом пути остаётся необходимость значительного охлаждения материалов для появления сверхпроводимости. В идеале необходимо найти металлы, у которых сверхпроводимость проявлялась бы при комнатной температуре. На днях шаг в эту сторону сделала группа российских и китайских учёных.

Учёные из Сколково и Цзилиньского университета (Китай) смогли создать соединение, которое невозможно предсказать или описать классической химией. В ходе серии экспериментов было получено соединение водорода с празеодимом, металлом из группы лантаноидов. Водородные соединения или гидриды, как принято считать в последние полтора десятилетия, могут являться отличными сверхпроводниками. Вот только получить металлический водород можно в условиях огромных давлений свыше 4 миллионов атмосфер.

В поставленном эксперименте металлический празеодим помещался в наполненную водородом среду и сжимался между двумя алмазными конусообразными «наковальнями». При этом образец нагревался с помощью лазера. В условиях нагрева и давления 40 ГПа вещества вступали в реакцию и получалось искомое соединение PrH3. Одна проблема, в таких условиях алмазные «наковальни» вступают в реакцию с водородом и могут разрушаться.

Чтобы избежать разрушения алмазного инструмента, учёные поменяли чистый водород на такое его соединение, как боран аммония. Это вещество содержит много водорода, который выделяется при нагреве и вступает в соединение с празеодимом. Только вот в процессе синтеза получилось соединение PrH9 с намного большим числом атомов водорода, чем может удержать празеодим в рамках классической химии. Такие «невозможные» молекулы описываются с использованием «квантовой» химии.

«Формально электронное строение атома празеодима не позволяет ему образовывать такое большое количество связей с другими атомами. Однако существование подобных «неправильных» соединений можно предсказать сложными квантовыми расчетами и подтвердить экспериментами».

Получение PrH9 не стало неожиданностью. Ранее учёные похожим образом синтезировали соединения водорода с лантаном — металлом из той же группы. Однако изучение нового соединения выявило интересную особенность. Выяснилось, что гидрид празеодима переходит в состояние сверхпроводника при температуре в −264 °С, что намного ниже температуры сверхпроводимости гидрида лантана LaH10. Иными словами, молекулы похожего строения повели себя непредсказуемо.

Выяснилось, что атомы празеодима, кроме того, что они являются донорами электронов, ещё несут с собой небольшие магнитные моменты, которые подавляют сверхпроводимость. Это явление ведёт к тому, что температура появления сверхпроводимости падает. Эффект, на первый взгляд, отрицательный, ведь нам нужно повышать температуру сверхпроводимости. Но выявленное явление чётко указывает, с какими металлами лучше иметь дело для поиска «комнатной» сверхпроводимости, а с какими нет.

В частности, для этого лучше использовать металлы из «пояса лабильности», расположенного между II и III группами таблицы Менделеева, а из лантаноидов ближе всего к «поясу лабильности» лантан и церий. Ждём новых экспериментов.

Источник:

window-new
Soft
Hard
Тренды 🔥
Видео: высокоуровневые сражения, киберпанковые локации и опасные враги в геймплейном ролике The Ascent 57 мин.
«Проснулся уже?»: в дополнении Greymoor к TES Online спародировали вступление из TES V: Skyrim 2 ч.
Steam теперь напрямую поддерживает GeForce Now — функция Steam Cloud Play вошла в «бету» 2 ч.
Какие функции Microsoft перестала развивать или удалила в майском обновлении Windows 10 (2004) 3 ч.
Количество интернет-пользователей в Китае превысило 900 млн 3 ч.
Бесплатные выходные на Xbox One: Jump Force, Hunt: Showdown и Stellaris: Console Edition 3 ч.
Worms, Overcooked!, Blasphemous и другие: в Steam началась распродажа игр Team17 со скидками до 80 % 3 ч.
Олдскульный шутер Wrath: Aeon of Ruin получил очередное обновление и дату выхода — 25 февраля 2021 года 3 ч.
Похоже, на следующей неделе EA Motive анонсирует Project Maverick — новую игру во вселенной «Звёздных войн» 4 ч.
Эмулятор Nintendo Switch уже получил поддержку ремастера Xenoblade Chronicles, но проблем хватает 4 ч.