Новости Hardware → нанотехнологии
Быстрый переход

Учёный из Imec получил грант на разработку сверхмалого микроскопа

Изобретение микроскопа принесло революционные изменения почти во все области деятельности человека. Использование этого инструмента трудно переоценить, а широту применения невозможно ограничить какими-то рамками. Спустя столетия микроскоп продолжает совершенствоваться. В 2014 году, например, разработчики одной из самых передовых технологий в оптической флуоресцентной микроскопии удостоились Нобелевской премии. Это очень развитая и совершенная технология, но, к сожалению, она требует особых умений и дорогая в эксплуатации. Между тем прикладная и академическая науки требуют оптических микроскопов новых поколений и, в сочетании с современной электроникой, такие приборы обещают появиться.

Слева на фото Нильс Вереллен (Niels Verellen)

Слева на фото Нильс Вереллен (Niels Verellen)

На днях один из молодых учёных бельгийского исследовательского центра Imec Нильс Вереллен (Niels Verellen) был удостоен гранта Европейского научного совета ERC на разработку сверхкомпактного микроскопа. Программа предусматривает пятилетние исследования на сумму 1,5 млн евро. Микроскоп будет опираться на датчик изображения КМОП вкупе с использованием технологии кремниевой фотоники. Нильс Вереллен как раз специалист Imec по кремниевой фотонике. Сверхкомпактный микроскоп должен удовлетворять ряду других требований. Он не должен требовать материалов при обслуживании (zero-maintenance), иметь сверхвысокое разрешение, должен работать быстро с минимальной подготовкой к работе, не требовать каких-либо условий для работы и при этом должен быть недорогим. Иначе говоря — пригодным для массового производства.

Создание микроскопа по предъявленным выше условиям приведёт к облегчению диагностики целого ряда опасных для человека заболеваний. Разработка должна помочь в наблюдении живой клетки вплоть до молекулярного уровня и до секвенции ДНК «на коленке». Теоретически, подобные микроскопы можно будет встраивать даже в смартфоны.

Источник:

Стартовала программа по возрождению электроники США

Электроника США начинает возрождение. Правда, пока только на бумаге или в основном на бумаге. Во вторник, 24 июля, на саммите Electronics Resurgence Initiative Summit руководители тематических программ агентства DARPA объявили первых участников программы. Полный список победителей (руководителей проектов) с общим призовым фондом в размере $1,5 млрд на пять следующих лет можно найти по этой ссылке. Нас же интересуют имена компаний, которые будут возрождать электронику США.

Главными действующими лицами программы «Инициатива DARPA по возрождению электроники» (Electronics Resurgence Initiative, ERI) станут гиганты полупроводниковой индустрии — компании IBM, Intel, NVIDIA и Qualcomm, а также малоизвестная компания Skywater, которая, если забегать вперёд, получит наибольшее финансирование по данной программе — $61 млн. Субподрядчиками программы названы компании ARM и GlobalFoundries и целый ряд других компаний. Инициатива DARPA призвана дать толчок развитию электроники в США в период с 2025 по 2030 годы и освоить всё то, о чём сегодня разработчики могут только мечтать.

Помимо перечисленной выше пятёрки основных участников программы ERI тремя другими главными компаниями инициативы названы Applied Materials, Ferric Inc и HRL Laboratories (Калифорнийский университет). В качестве управляющих программой к проекту присоединились исследователи из компаний Mentor Graphics и Xilinx.

Возвращаясь к компании Skywater Technology Foundry, поясним, что это один из самых амбициозных проектов в рамках программы ERI. Эта компания, основанная на базе бывшего завода компании Cypress в штате Миннесота, должна разработать технологию производства монолитных 3D-чипов с весьма развитой функциональностью. Например, 90-нм 3D-полупроводники должны быть не хуже по характеристикам 7-нм планарных чипов.

Исследователи Skywater вместе с учёными из MIT и Стэндфордского университета будут работать в рамках подпрограммы DARPA 3DsoC (Three Dimensional Monolithic System-on-a-Chip). Они будут искать возможность интеграции в чипы новейших материалов для выпуска встраиваемой памяти ReRAM или углеродных нанотрубок. И всё это на базе устаревшего 90-нм низкотемпературного CMOS-процесса. При этом разработка призвана 50-кратно увеличить общую производительность вычислительного процесса.

Отдельно на встраиваемой перспективной энергонезависимой памяти сфокусируется программа Foundations Required for Novel Compute (FRANC). В частности, памятью MRAM будет заниматься компания GlobalFoundries. Программа FRANC должна 10-кратно улучшить встраиваемую память, чтобы она была плотнее классической SRAM и не хуже её по скорости работы. Главными разработчиками программы FRANC стали компании Applied Materials, Ferric, HRL и учёные из Университетов Миннесоты и Иллинойса и Калифорнийского университета в Лос-Анджелесе (UCLA). Помимо MRAM будут изучаться возможность использования других вариантов памяти, например памяти CeRAM (Correlated electron RAM, память с коррелированным электроном), на которую делает ставку компания ARM.

Компании Intel, NVIDIA и Qualcomm стали главными по программе Software-Defined Hardware (SDH, аппаратные системы, задаваемые программным обеспечением). Главными академическими исследователями по программе SDH стали Технологический институт Джорджии, Принстон, Стэнфорд и Университеты Мичигана и Вашингтона. Программа SDH призвана разработать чипы, которые могли бы изменять архитектурную конфигурацию в зависимости от исполняемой в данный момент задачи (подстраиваться под тип данных). В основе проекта лежит ускорение обработки графов. Этим, а также тензорной алгеброй и машинным обучением будет заниматься NVIDIA.

iStockphoto

iStockphoto

Компания IBM вместе с Национальной лабораторией Ок-Ридж и Университетами Аризоны и Стэнфордом займётся программой Domain-Specific System on Chip (DSSoC) или SoC-ускорителями специфических задач. Грубо говоря, разработчики должны найти баланс между ASIC и CPU, чтобы проложить дорогу к массе специализированных ускорителей. О двух других программах — IDEAS и POSH, мы рассказывали в начале июля. Осенью DARPA планирует анонсировать ещё несколько программ в рамках инициативы ERI.

Источник:

Сделан шаг к памяти будущего: воспроизведён магнитный вихрь (скирмион) размерами 13 нм

Скирмионы или мельчайшие магнитные вихревые структуры, направление магнитной оси индивидуальных атомов в которых меняется по мере удаления от центра вплоть до полной противоположности, интересуют учёных не первый год. Скирмион как устойчивая структура может служить единицей для записи данных на магнитном носителе. Главная особенность скирмиона заключается в возможности воспроизвести его в магнитном материале с меньшими энергетическими затратами, чем в случае изменения намагниченности обычного домена на магнитном носителе жёсткого диска. Происходит это благодаря тому, что векторы атомов в магнитном вихре уже частично и даже полностью развёрнуты в нужную сторону, тогда как в обычном случае приходится менять направление намагниченности на полностью противоположное.

Условное изображение магнитнго вихря, известного как скирмион (Nanoscale / Royal Society of Chemistry)

Условное изображение магнитного вихря, известного как скирмион (Nanoscale / Royal Society of Chemistry)

Очевидно, что подобные качества скирмионов заставляют задуматься об использовании мельчайших магнитных вихрей в качестве основы для памяти будущего. Остаётся решить вопросы масштабирования, подобрать материалы и создать условия для формирования устойчивых вихревых структур при комнатных температурах. Что-то из этого решено, пусть частично, что-то требуется решить. Так, учёные из Университета Небраски-Линкольна (University of Nebraska–Lincoln) смогли закрутить магнитную спираль скирмиона диаметром всего 13 нм. До этого рекордом считался 50-нм скирмион, и дальше дело не шло. Материалом, на котором создан мельчайший магнитный вихрь, остаётся моносилицид марганца (MnSi). Температура, при котором скирмион оставался стабильным, составила −230 °C.

Трековая память в представлении IBM

Трековая память в представлении IBM

Интересным явлением также считается возможность перемещения скирмион с помощью электрических имульсов. Это открывает путь к так называемой трековой памяти, когда данные хранятся и считываются с наномасштабных нитей. В магнитной нити или треке электрический ток способен передавать вихревое состояние (скирмион) от одной группы атомов к другой. Это очевидным образом открывает возможность создания магнитных носителей без механически движущихся частей. Иначе говоря, с высочайшей и недоступной механическим конструкциям надёжностью. Перспективной, например, считается разработка треков шириной около 20 нм. Опыты группы учёных из Университета Небраски-Линкольна приближают создание подобных систем хранения данных.

Источник:

Samsung Foundry и ARM готовят почву для выпуска процессоров с частотами свыше 3 ГГц

Компания Samsung официально сообщила о расширении сотрудничества с компанией ARM для успешного продвижения на рынок высокопроизводительных вычислительных платформ. Совместная работа обещает поднять вычислительную производительность решений до новых уровней — выше отметки в 3 ГГц, в чём поможет 7-нм техпроцесс Samsung и последующие техпроцессы. В компании подчёркивают, что это стратегическое партнёрство, позволяющее каждому из участников оставаться на новых рынках на шаг впереди конкурентов.

Если говорить конкретно, то компания ARM для техпроцессов Samsung Foundry 7LPP (7nm Low Power Plus) и 5LPE (5nm Low Power Early) готовит обновлённую платформу Artisan physical IP, в частности — архитектуру ARM Cortex-A76 с частотным потенциалом сверх 3 ГГц тактовой частоты. Платформа Artisan physical IP включает комплекс готовых блоков, «кремниевых» компиляторов и стандартных библиотек элементов, интерфейсов и блоков. Уточним, оптимизированные для работы с линиями Samsung платформы ARM будут подготовлены только в первой половине 2019 года, хотя Samsung начнёт выпуск самостоятельно спроектированных 7-нм чипов ещё до конца текущего года. Завершение разработки Artisan physical IP для 5-нм техпроцесса Samsung также ожидается в первой половине 2019 года.

Для ускоренного вывода новой продукции на рынок будет предложен другой комплект инструментов и решений — ARM Artisan POP IP (Processor Optimization Pack). Платформа ARM Artisan POP IP представляет собой практически готовую к производству продукцию (ядра и процессоры), разработанную инженерами ARM, которая распространяется на правах лицензирования. Заказчик получит новейшие ядра ARM или процессоры под свои нужды, включая поддержку новейшей технологии ARM DynamIQ для объединения в одном процессоре до 8 разнородных ядер. Платформа ARM Artisan POP IP также будет оптимизирована для выпуска на 7-нм и на будущих 5-нм линиях Samsung.

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Отличительной особенностью 7-нм техпроцесса Samsung станет первое в индустрии использование EUV-литографии для создания нескольких критически важных слоёв в чипах. Инструменты ARM помогут разработчикам освоить новые технологии при проектировании и минимизировать уровень ошибок.

Источник:

Imec представил технологию, которая вдвое увеличит плотность размещения транзисторов

Imec продолжает радовать разработками, открывающими путь к производству полупроводников с нормами менее 5–3 нм. Среди прочих докладов на симпозиуме VLSI Technology 2018 разработчики центра рассказали о найденной серии технологических цепочек, которая позволит выпускать комплементарные пары полевых транзисторов с использованием технологических норм менее 3 нм (complementary FET, CFET). Процесс производства CFET по энергоэффективности и производительности транзисторов может в итоге превзойти техпроцесс FinFET применительно к технологическим нормам 3 нм. Более того, техпроцесс CFET открывает возможность уменьшить на 50 % размеры как стандартных (цифровых) ячеек, так и ячеек памяти SRAM.

Слева указаны варианты строения ячеек (стандартной и SRAM), а справа комплиментарная структура из двух транзисторов

Слева указаны варианты строения ячеек (стандартной и SRAM), а справа — предложенная Imec комплиментарная структура из двух транзисторов

Напомним, что на использовании комплементарных пар транзисторов базируется классические КМОП (CMOS) техпроцессы производства микросхем. Это транзисторы с разным типом проводимости (n и p), но идентичные или почти идентичные по параметрам. Разработчики Imec внесли смелое предложение создавать на кристалле комплиментарные транзисторы не рядом, а друг над другом. В предложенной Imec цепочке операций по обработке кремниевой пластины полевой транзистор n-типа (nFET) располагается над полевым транзистором p-типа (pFET).

Транзистор pFET выполнен в виде вертикального ребра (фактически FinFET), а транзистор nFET в виде вынесенной над ним наностраницы (по сути такого же ребра FinFET). Особая прелесть данной конструкции в том, что она создаётся в обычном техпроцессе, как для выпуска транзисторов FinFET. Анализ конструкции с помощью TCAD-инструментов доказывает, что производительность и потребление CFET, выпущенных с использованием 3-нм техпроцесса, превзойдёт показатели транзисторов FinFET в лучшую сторону. Тем не менее, есть проблема, с которой ещё придётся разобраться — это высокое паразитное сопротивление участка подключения истока к верхнему nFET-транзистору (происходит значительное падение напряжения Vss). Данную проблему можно решить, например, за счёт использования рутения в качестве проводника.

Что касается размера ячеек, то «цифровую» или стандартную ячейку в случае CFET удаётся свести к схеме с тремя активными рёбрами FinFET (три контактных площадки в первом слое металлизации), а ячейку SRAM — к схеме с четырьмя активными рёбрами FinFET. Современные же техпроцессы дают возможность создавать ячейку с 6 активными рёбрами и не меньше (6T). На картинке выше, поясним, показаны только активные рёбра FinFET. Рёбра-пустышки, которые разделяют активные FinFET, но не задействованы в схеме ячейки, на картинке заменены пустыми местами, но на кристалле они физически присутствуют и занимают место. «Двухэтажные» комплементарные транзисторы позволят с пользой использовать окружающую площадь. В этом с Imec согласны партнёры по программе разработки компании GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, Sony Semiconductor Solutions, TOSHIBA Memory, TSMC и Western Digital.

Источник:

Для техпроцессов с нормами менее 5 нм Imec предложила «нанотранзистор»

К симпозиуму VLSI Technology 2018 бельгийский центр Imec подготовил два связанных документа, в которых раскрыл варианты производства транзисторных структур с технологическими нормами менее 5 нм. Данная разработка призвана преодолеть фундаментальное ограничение, связанное с необходимостью уменьшать размеры транзисторных элементов. По мере снижения размеров элементов, в частности — сечения транзисторных каналов, снижаются также максимально допустимые значения токов, которые можно пропускать через транзистор.

Схематическое изображение транзисторных каналов в поперечном сечении: FinFET, нанопровода, наностраницы

Схематическое изображение транзисторных каналов в поперечном сечении: а) FinFET, б) нанопровода, в) наностраницы

Чтобы продолжить уменьшать размеры транзисторов и не терять в производительности решений, Imec предлагает в качестве материала канала транзистора использовать не кремний, а германий. В первом документе исследователи с цифрами на руках доказали ценность практического использования германия в каналах полевых транзисторов с p-проводимостью (pFET) для техпроцессов с нормами менее 5 нм. При этом канал транзистора выполняется в виде нанопроводника (nanowire).

К сожалению, даже выполненный из германия один нанопроводной канал не может обеспечить достаточных токовых характеристик для транзисторов требуемой функциональности. Поэтому во втором документе исследователи рассказывают о кольцевых затворах вокруг нанопроводников-каналов (gate-all-around) и о технологии стековой компоновки каналов, когда каждый транзисторный канал представляет собой совокупность нескольких уложенных друг на друга нанопроводников-каналов каждый со своим кольцевым затвором. Суммарное сечение всех каналов оказывается достаточным, чтобы не создавать току высокого сопротивления. Также в такой стековой конструкции паразитная ёмкость оказывается меньше, чем если бы у транзистора был один общий канал.

Реальное изображение сечения транзисторных каналов с затворами вокруг наностраниц (IBM, техпроцесс 5 нм)

Реальное изображение сечения транзисторных каналов с затворами вокруг наностраниц (IBM, техпроцесс 5 нм)

Ещё одна тонкость заключается в том, что в качестве материала для канала используется не просто германий, а так называемый напряжённый германий. Это не новая технология, её для кремния используют все производители процессоров. Смысл этого действа — растянуть атомарную решётку материала и улучшить мобильность передвижения электронов. Тем самым германий, который и так обладает лучшей мобильностью электронов, чем кремний, становится ещё лучше.

Всё выше сказанное специалисты Imec воплотили в «железе», создав и продемонстрировав полевой транзистор p-типа с кольцевым затвором и каналом из нанопроводов. Правда, для этого была использована производственная платформа 14/16 нм. Но принцип понятен и он работает. Партнёрами центра по этой программе выступают компании GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, Sony Semiconductor Solutions, TOSHIBA Memory, TSMC и Western Digital, чьи имена говорят сами за себя.

Источник:

Кое-что новенькое: память SOT-MRAM можно выпускать в промышленных масштабах

Как мы знаем, энергонезависимую память STT-MRAM (spin-transfer torque MRAM) в настоящее время выпускает компания GlobalFoundries по проекту компании Everspin Technologies. Плотность 40-нм микросхем STT-MRAM составляет всего 256 Мбит (32 Мбайт), что выгодно компенсируется высокой скоростью работы и большей устойчивостью к разрушению во время операций очистки, чем в случае памяти NAND. Эти высокие качества STT-MRAM позволяют претендовать магниторезистивной памяти с записью данных с помощью переноса спинового момента (spin-transfer torque) на место в процессоре. Как минимум речь идёт о замене массивов SRAM на массивы STT-MRAM в качестве кеш-памяти третьего уровня (L3). А что же с кеш-памятью L1 и L2?

По мнению специалистов бельгийского исследовательского центра Imec, для использования магниторезистивной памяти MRAM в качестве энергонезависимого кеша первого и второго уровней память STT-MRAM подходит не очень хорошо. На эту роль претендует более совершенный вариант магниторезистивной памяти, а именно — SOT-MRAM (spin-orbit torque MRAM). Запись в ячейку SOT-MRAM также происходит спин-поляризованным током, но только в виде передачи вращательного момента, используя для этого спин-орбитальный момент электронов.

Принципиальная разница заключается в схеме управления туннельным переходом в составе ячейки памяти и в методе записи. Так, ячейка STT-MRAM представляет собой бутерброд из двух тонкоплёночных структур (разделённых диэлектриком), одна из которых имеет постоянную намагниченность, а вторая «свободную» — зависящую от поляризации приложенного тока. Запись и чтение данных из такой ячейки происходят одинаково при пропускании токов перпендикулярно через туннельный переход. Тем самым износ ячейки происходит как во время записи, так и во время чтения, хотя при чтении токи значительно меньше, чем при записи.

Ячейка с туннельным переходом SOT-MRAM, также содержащая свободный слой и слой с постоянной намагниченностью, записывается током, который движется вдоль туннельного перехода, а не через все слои. Изменение «геометрии» подачи тока, заявляют в Imec, значительно повышает как устойчивость ячейки к износу, так и скорость переключения слоя. При сравнении работы ячеек STT-MRAM и SOT-MRAM, выпущенных на одной и той же пластине типоразмера 300 мм, для SOT-MRAM устойчивость к износу превысила 5·1010, а скорость переключения ячейки (запись) снизилась с 5 нс до 210 пс (пикосекунд). Потребление при этом было на низком уровне, равном 300 пДж (пикоджоулей).

Особый шарм всей этой истории заключается в том, что в Imec показали возможность выпускать память SOT-MRAM на штатном оборудовании на 300-мм кремниевых подложках. Иначе говоря, на практическом уровне доказали возможность запуска массового производства памяти типа SOT-MRAM.

Источник:

Samsung подтвердила планы использовать сканеры EUV для выпуска DRAM

Как сообщает интернет-ресурс News1 Korea, ответственный руководитель компании Samsung Electronics на днях подтвердил намерение производителя выпускать микросхемы оперативной памяти типа DRAM с использованием сканеров диапазона EUV (13,5 нм). Ранее о такой возможности уже сообщалось, но теперь прозвучал официальный комментарий Samsung. С помощью EUV-проекции предполагается выпускать 16-нм DRAM с началом коммерческого производства к 2020 году. Впоследствии с помощью EUV-проекции компания планирует также выпускать 17-нм память.

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

Первый коммерческий сканер ASML для EUV-литографии (NXE:3300B)

В настоящий момент, напомним, Samsung для выпуска микросхем памяти использует 193-нм сканеры. Компания уже приступила к производству DRAM с использованием второго поколения техпроцесса с нормами класса 10 нм (это 17-нм или 16-нм техпроцесс, тогда как первое поколение техпроцесса опиралось на 18-нм нормы). Как видим, компания прекрасно справляется с выпуском DRAM без перехода на EUV-сканеры. Для этого для изготовления критически важных слоёв она использует последовательно по четыре фотошаблона и четыре цикла обработки (технология Quadruple Patterning Technique, QPT). Кстати, она первой в мире применила четырёхкратную проекцию для выпуска памяти и снова станет первой, если начнёт выпускать память с помощью литографии EUV.

В идеальном случае сканеры диапазона EUV помогут сократить число производственных циклов (и фотошаблонов) для изготовления каждого слоя с четырёх циклов до одного. Это касается выпуска памяти 10-нм класса, для выпуска DRAM с нормами от 7 нм и ниже потребуется больше одного шаблона на слой. Попросту говоря, Samsung намерена существенно сократить затраты на производство DRAM практически без увеличения роста плотности записи.

Что касается конкурентов, то компания Micron разрабатывает 13-нм DRAM, которую рассчитывает начать выпускать с 2020 года в Японии на бывших заводах Elpida Memory. Будет ли она использовать для этого сканеры EUV, сейчас неизвестно, разработка техпроцесса только стартовала. Компания SK Hynix готовится выпускать в 2019 году DRAM с использованием техпроцесса с нормами 17 или 16 нм. Сканеры EUV она при этом использовать не будет. Поэтому существует ненулевая вероятность, что Samsung снова совершит маленькую революцию, первой начав выпускать чипы DRAM на ультрасовременном EUV-оборудовании.

Источник:

Аналоговая память IBM ускорит глубокое машинное обучение

Как уже не раз было заявлено, современные микропроцессорные архитектуры и процессоры плохо подходят на роль аппаратных платформ для машинного обучения и, собственно, для платформ с искусственным интеллектом. Чтобы было хорошо, компьютер по структуре и методу работы должен быть похож на мозг человека. «Венец природы» не лишён самолюбия, да. С другой стороны, эволюция сотни тысяч лет работала над проектом «человек» и в этом деле может считаться экспертом.

Человеческий мозг, как известно, оперирует не двоичной системой записи, а сложными химико-биологическими конструкциями с использованием импульсов с электрической природой. К тому же, память и процессор в мозгу — это монолитная структура, а не отдельно банк памяти с внутренней шиной и процессором. И, да, с точностью вычислений в голове могут быть сложности, но вы и сами об этом знаете.

Исследователи IBM расценили, что работа нейронных сетей для глубокого обучения необязательно должна обладать такой же точностью, как исполнение двоичного кода. А раз высокая точность не нужна (для этого достаточно точности работы программной модели), то платформу для запуска задач на DNN (deep neural network) можно выполнить без использования сложных, но классических логических цепей с использованием многочисленных блоков для исполнения операций умножения и накопления.

Упрощённая платформа IBM для сетей с глубоким обучением предполагает использование аналоговой памяти. Иначе говоря, данные в ячейках памяти хранятся не в виде 0 или 1, а в виде некоего весового значения, которое вычисляется с приблизительной точностью и может иметь значительный разброс в значениях, включая выход далеко за пределы 1. В качестве примера аналоговой памяти можно привести магнитофонную магнитную плёнку или современные её виды — это резистивная память и память с ячейкой из вещества с изменяемым фазовым состоянием (phase-change memory, PCM).

Условная структура аналоговй памяти IBM (IBM)

Условная структура аналоговой памяти IBM (IBM)

Компания IBM так описывает работу аналоговой памяти: «Эта память позволяет выполнять операции умножения-накопления через распараллеливание с помещением в аналоговые домены весовых значений [данных], используя соответствующую физику [процесса]. Вместо больших цепей для умножения и сложения цифровых значений друг с другом, мы просто пропускаем небольшой ток через сопротивление в проводнике и затем просто соединяем множество таких проводников вместе, позволяя току нарастать. Это позволяет совершать множество вычислений одновременно, вместо выполнения последовательных операций».

Понятно, что с  точностью у вычислений «проводок плюс проводок» будет не так хорошо, как в случае работы триггера. Но на опытах IBM показала, что точность работы определённых моделей нейронных сетей на аналоговой памяти достаточная для выполнения многих задач. По прикидкам, на основе разработки можно создать ускоритель работы DDN с энергетической эффективностью 28 065 Гигаопераций/с/Вт или с пропускной способностью 3,6 Тераопераций/с/мм2. Это будет в разы больше, чем при запуске нейронных сетей на графических процессорах с одинаковой точностью в вычислениях. К тому же, расчёт весовых значений и их изменение происходят непосредственно в запоминающем элементе, что устраняет необходимость в энергоёмкой передаче данных из памяти в процессор и обратно.

Источник:

За использование FinFET-транзисторов Samsung должна уплатить штраф в $400 млн

По данным источников, в Федеральном суде Техаса жюри присяжных вынесло вердикт о виновности компании Samsung в патентом споре с южнокорейским институтом KAIST (Korea Advanced Institute of Science and Technology). Американское подразделение KAIST IP со штаб-квартирой в Далласе подало иск против Samsung о нарушении правил лицензирования передовых технологий. В частности, Samsung якобы незаконно воспользовалась разработками института в области создания вертикальных затворов транзисторов (FinFET).

Структура типичного FinFET транзистора (WikiChip)

Структура типичного FinFET транзистора (WikiChip)

По мнению жюри, Samsung незаконно и умышленно использовала разработки KAIST, за что должна выплатить институту $400 млн. Вместе с Samsung первоначально обвинения были выдвинуты против компаний GlobalFoundries и Qualcomm. Первая была виновна в лицензировании технологии производства с использованием FinFET у компании Samsung, а вторая заказывала продукцию у южнокорейского полупроводникового гиганта. По мнению жюри, GlobalFoundries и Qualcomm в данном случае считаются невиновными.

Иск против Samsung был подан в декабре 2016 года. Представители института заявляли, что Samsung в своё время считала технологию FinFET пустой тратой времени и заинтересовалась ею только тогда, когда компания Intel запатентовала собственные разработки в этой области и начала распространять лицензии на использование вертикальных транзисторных структур.

https://ru.wikipedia.org

https://ru.wikipedia.org

Нам всё это кажется высосанным из пальца, поскольку технологиями FinFET плотно занимались все производители ещё с начала «нулевых» годов. Так, одной из первых опытный выпуск FinFET-структур в 2002 году начала компания AMD на базе центра Калифорнийского университета в Беркли (привет из прошлого компании GlobalFoundries). В этом же году на конференции IEDM о FinFET-транзисторах из трёх рёбер рассказала компания Intel, а IBM сделала доклад на тему вертикальных транзисторных каналов. Компания TSMC также с группой учёных в том же Калифорнийском университете создавала свои FinFET-структуры. Компания Samsung позже включилась в этот процесс, но она активно работала с исследователями IBM, и ей не нужны были разработки KAIST. Собственно, Samsung собирается подать апелляцию на судебное решение, принятое в Техасе.

Источник:

Soft
Hard
Тренды 🔥